Актриса татьяна васильева после пластики

Введение

  • 1. По рисунку 8 назовите: а) плоскости, в которых лежат прямые РЕ, МК, DB, АВ, ЕС; б) точки пересечения прямой DK с плоскостью ABC, прямой СЕ с плоскостью ADB; в) точки, лежащие в плоскостях ADB и DBC; г) прямые, по которым пересекаются плоскости ABC и DC
  • 2. По рисунку 9 назовите: а) точки, лежащие в плоскостях DCC1 и BQC; б) плоскости, в которых лежит прямая АА1; в) точки пересечения прямой МК с плоскостью ABD, прямых DK и ВР с плоскостью А1В1С1; г) прямые, по которым пересекаются плоскости АА1В1 и ACD, Р
  • 3. Верно ли, что: а) любые три точки лежат в одной плоскости; б) любые четыре точки лежат в одной плоскости; в) любые четыре точки не лежат в одной плоскости; г) через любые три точки проходит плоскость, и притом только одна?
  • 4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три из них лежать на одной прямой? б) Могут ли прямые АВ и CD пересекаться? Ответ обоснуйте.
  • 5. Докажите, что через три данные точки, лежащие на прямой, проходит плоскость. Сколько существует таких плоскостей?
  • 6. Три данные точки соединены попарно отрезками. Докажите, что все отрезки лежат в одной плоскости.
  • 7. Две прямые пересекаются в точке М. Докажите, что все прямые, не проходящие через точку М и пересекающие данные прямые, лежат в одной плоскости. Лежат ли в одной плоскости все прямые, проходящие через точку М?
  • 8. Верно ли утверждение: а) если две точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости; б) если три точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости?
  • 9. Две смежные вершины и точка пересечения диагоналей параллелограмма лежат в плоскости α. Лежат ли две другие вершины параллелограмма в плоскости α? Ответ обоснуйте.
  • 10. Верно ли, что прямая лежит в плоскости данного треугольника, если она: а) пересекает две стороны треугольника; б) проходит через одну из вершин треугольника?
  • 11. Даны прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие через данную точку и пересекающие данную прямую, лежат в одной плоскости.
  • 12. Точки А, В, С, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точки А, В, С и А, В, D?
  • 13. Могут ли две плоскости иметь: а) только одну общую точку; б) только две общие точки; в) только одну общую прямую?
  • 14. Три прямые проходят через одну точку. Через каждые две из них проведена плоскость. Сколько всего проведено плоскостей?
  • 15. Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскости, либо имеют общую точку.

Глава I Параллельность прямых и плоскостей. §1 Параллельность прямых, прямой и плоскости.

  • 16. Параллельные прямые a и b актриса татьяна васильева после пластики лежат в плоскости α. Докажите, что прямая с, пересекающая прямые a и b, также лежит в плоскости α.
  • 17. На рисунке 17 точки М, N, Q и Р — середины отрезков DB, DC, АС и АВ. Найдите периметр четырехугольника MNQP, если AD= 12 см, ВС =14 см.
  • 18. Точка C лежит на отрезке АВ. Через точку А проведена плоскость, а через точки В и С — параллельные прямые, пересекающие эту плоскость соответственно в точках В1 и С1. Найдите длину отрезка СС1, если: а) точка С — середина отрезка АВ и ВВ1=7 см; б) АС:
  • 19. Стороны АВ и ВС параллелограмма ABCD пересекают плоскость α. Докажите, что прямые AD и DC также пересекают плоскость α.
  • 20. Средняя линия трапеции лежит в плоскости α. Пересекают ли прямые, содержащие основания трапеции, плоскость α? Ответ обоснуйте.
  • 21. Треугольники ABC и ABD не лежат в одной плоскости. Докажите, что любая прямая, параллельная отрезку CD, пересекает плоскости данных треугольников.
  • 22. Точки А и В лежат в плоскости а, а точка С не лежит в этой плоскости. Докажите, что прямая, проходящая через середины отрезков АС и ВС, параллельна плоскости α.
  • 23. Точка М не лежит в плоскости прямоугольника ABCD. Докажите, что прямая CD параллельна плоскости АВМ.
  • 24. Точка М не лежит в плоскости трапеции ABCD с основанием AD. Докажите, что прямая AD параллельна плоскости ВМС.
  • 25. Докажите, что если данная прямая параллельна прямой, по которой пересекаются две плоскости, и не лежит в этих плоскостях, то она параллельна этим плоскостям.
  • 26. Сторона АС треугольника ABC параллельна плоскости α, а стороны АВ и ВС пересекаются с этой плоскостью в точках М и N. Докажите, что треугольники ABC и MBN подобны.
  • 27. Точка С лежит на отрезке АВ, причем АВ:ВС = 4:3. Отрезок CD, равный 12 см, параллелен плоскости α, проходящей через точку В. Докажите, что прямая AD пересекает плоскость α в некоторой точке E, и найдите отрезок BE
  • 28. На сторонах АВ и АС треугольника ABC взяты соответственно точки D и Е так, что DE = 5 см и BD/DA=2/3. Плоскость α проходит через точки B и С и параллельна отрезку DE. Найдите длину отрезка ВС.
  • 29. В трапеции ABCD основание ВС равно 12 см. Точка М не лежит в плоскости трапеции, а точка К — середина отрезка ВМ. Докажите, что плоскость ADK пересекает отрезок МС в некоторой точке Н, и найдите отрезок КН.
  • 30. Основание АВ трапеции ABCD параллельно плоскости α, а вершина С лежит в этой плоскости. Докажите, что: а) основание CD трапеции лежит в плоскости α; б) средняя линия трапеции параллельна плоскости α.
  • 31. Плоскость α параллельна стороне ВС треугольника ABC и проходит через середину стороны АВ. Докажите, что плоскость α проходит также через середину стороны АС.
  • 32. Плоскости α и β пересекаются по прямой АВ. Прямая а параллельна как плоскости α, так и плоскости β. Докажите, что прямые а и АВ параллельны.
  • 33. Докажите, что если три плоскости, не проходящие через одну прямую, попарно пересекаются, то прямые, по которым они пересекаются, либо параллельны, либо имеют общую точку.

Глава I Параллельность прямых и плоскостей. §2 Взаимное расположение прямых в пространстве. Угол между двумя прямыми.

  • 34. Точка D не лежит в плоскости треугольника ABC, точки М, N и Р — середины отрезков DA, DB и DC соответственно, точка К лежит на отрезке BN. Выясните взаимное расположение прямых: a) ND и АВ; б) РК и ВС; в) MN и АВ; г) МР и АС; д) KN и AC; е) MD и ВС.
  • 35. Через точку М, не лежащую на прямой а, проведены две прямые, не имеющие общих точек с прямой а. Докажите, что по крайней мере одна из этих прямых и прямая а являются скрещивающимися прямыми.
  • 36. Прямая с пересекает прямую а и не пересекает прямую b, параллельную прямой а. Докажите, что b и с — скрещивающиеся прямые.
  • 37. Прямая m пересекает сторону АВ треугольника ABC. Каково взаимное расположение прямых m и ВС, если: а) прямая m лежит в плоскости ABC и не имеет общих точек с отрезком АС; б) прямая m не лежит в плоскости ABC?
  • 38. Через вершину А ромба ABCD проведена прямая а, параллельная диагонали BD, а через вершину С — прямая b, не лежащая в плоскости ромба. Докажите, что: а) прямые а и CD пересекаются; б) а и b скрещивающиеся прямые.
  • 39. Докажите, что если АВ и CD скрещивающиеся прямые, то AD и ВС также скрещивающиеся прямые.
  • 40. На скрещивающихся прямых а и b отмечены соответственно точки М и N. Через прямую а и точку N проведена плоскость α, а через прямую b и точку М — плоскость β. а) Лежит ли прямая b в плоскости α? б) Пересекаются ли плоскости α и &
  • 41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямой? Ответ обоснуйте.
  • 42. Даны параллелограмм ABCD и трапеция ABEK с основанием ЕК, не лежащие в одной плоскости, а) Выясните взаимное расположение прямых CD и ЕК. б) Найдите периметр трапеции, если известно, что в нее можно вписать окружность и АВ = 22,5 см, EK = 27,5 см.
  • 43. Докажите, что середины сторон пространственного четырехугольника являются вершинами параллелограмма.
  • 44. Прямые ОВ и CD параллельные, а ОА и CD — скрещивающиеся прямые. Найдите угол между прямыми ОА и CD, если: а) ∠АОВ = 40°; б) ∠АОВ= 135°; в) ∠АОВ = 90°.
  • 45. Прямая а параллельна стороне ВС параллелограмма ABCD и не лежит в плоскости параллелограмма. Докажите, что а и CD — скрещивающиеся прямые, и найдите угол между ними, если один из углов параллелограмма равен: а) 50°; б) 121°.
  • 46. Прямая m параллельна диагонали BD ромба ABCD и не лежит в плоскости ромба. Докажите, что: a) m и АС — скрещивающиеся прямые — и найдите угол между ними; б) m и AD — скрещивающиеся прямые — и найдите угол между ними, если ∠ABC=128°.
  • 47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CD образуют равные углы с прямой, проходящей через середины отрезков ВС и AD.

Глава I Параллельность прямых и плоскостей. §3 Параллельность плоскостей

  • 48. Укажите модели параллельных плоскостей на предметах классной обстановки.
  • 49. Прямая m пересекает плоскость α в точке В. Существует ли плоскость, проходящая через прямую m и параллельная плоскости α?
  • 50. Плоскости α и β параллельны, прямая m лежит в плоскости α. Докажите, что прямая m параллельна плоскости β.
  • 51. Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые m и n плоскости α параллельны плоскости β.
  • 52. Две стороны треугольника параллельны плоскости α. Докажите, что и третья сторона параллельна плоскости α.
  • 53. Три отрезка А1А2 В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны.
  • 54. Точка В не лежит в плоскости треугольника ADC, точки М, N и Р — середины отрезков ВА, ВС и BD соответственно. а) Докажите, что плоскости MNP и ADC параллельны. б) Найдите площадь треугольника MNP, если площадь треугольника ADC равна 48 см2.
  • 55. Докажите, что если прямая а пересекает плоскость α, то она пересекает также любую плоскость, параллельную плоскости α.
  • 56. Плоскости α и β параллельны, А — точка плоскости α. Докажите, что любая прямая, проходящая через точку А и параллельная плоскости β, лежит в плоскости α.
  • 57. Прямая а параллельна одной из двух параллельных плоскостей. Докажите, что прямая а либо параллельна другой плоскости, либо лежит в ней.
  • 58. Докажите, что если плоскость γ пересекает одну из параллельных плоскостей α и β, то она пересекает и другую плоскость.
  • 59. Докажите, что через точку А, не лежащую в плоскости α, проходит плоскость, параллельная плоскости α, и притом только одна.
  • 60. Две плоскости &alpha и β параллельны плоскости γ. Докажите, что плоскости &alpha и β параллельны.
  • 61. Даны пересекающиеся прямые а и b и точка А, не лежащая в плоскости этих прямых. Докажите, что через точку А проходит плоскость, параллельная прямым a и b, и притом только одна.
  • 62. Для проверки горизонтальности установки диска угломерных инструментов пользуются двумя уровнями, расположенными в плоскости диска на пересекающихся прямых. Почему уровни нельзя располагать на параллельных прямых?
  • 63. Параллельные плоскости &alpha и β пересекают сторону АВ угла ВАС соответственно в точках A1 и A2, а сторону АС этого угла — соответственно в точках В1 и В2. Найдите: а) АА2 и АВ2, если A1A2 = 2A1A, A1A2=12 см, АВ1 =5 см; б) А2В2 и AA2, если A1B1
  • 64. Три прямые, проходящие через одну точку и не лежащие в одной плоскости, пересекают одну из параллельных плоскостей в точках A1, B1 и C1 а другую — в точках A2, B2 и C2. Докажите, что треугольники A1B1C1 и А2В2С2 подобны.
  • 65. Параллельные отрезки А1А2, В1В2 и С1С2 заключены между параллельными плоскостями α и β (рис. 32). а) Определите вид четырехугольников A1B1B2A2, B1C1C2B2 и A1C1C2A2. б) Докажите, что ΔA1B1C1 = ΔА2В2С2.

Глава I Параллельность прямых и плоскостей. §4 Тетраэдр и параллелепипед.

  • 66. Назовите все пары скрещивающихся (т.е: принадлежащих скрещивающимся прямым) ребер тетраэдра ABCD. Сколько таких пар ребер имеет тетраэдр?
  • 67. В тетраэдре DABC дано: ∠ADB = 54°, ∠BDC = 72°, ∠CDA =90°, DA=20 см, BD = 18 см, DC = 21 см. Найдите: а) ребра основания ABC данного тетраэдра; б) площади всех боковых граней.
  • 68. Точки М и N — середины ребер АВ и АС тетраэдра ABCD. Докажите, что прямая MN параллельна плоскости BCD.
  • 69. Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.
  • 70. Докажите, что плоскость, проходящая через середины ребер АВ, АС и AD тетраэдра ABCD, параллельна плоскости BCD.
  • 71. Изобразите тетраэдр DABC и на ребрах DB, DC и ВС отметьте соответственно точки М, N и К. Постройте точку пересечения: а) прямой MN и плоскости АВС; б) прямой KN и плоскости ABD.
  • 72. Изобразите тетраэдр DABC и постройте сечение этого тетраэдра плоскостью, проходящей через точку М параллельно плоскости грани ABC, если: а) точка М является серединой ребра AD; б) точка М лежит внутри грани ABD.
  • 73. В тетраэдре ABCD точки М, N и Р являются серединами ребер АВ, ВС и CD, АС=10 см, BD= 12 см. Докажите, что плоскость MNP проходит через середину К ребра AD, и найдите периметр четырехугольника, полученного при пересечении тетраэдра плоскостью MNP.
  • 74. Через точку пересечения медиан грани BCD тетраэдра ABCD проведена плоскость, параллельная грани ABC. а) Докажите, что сечение тетраэдра этой плоскостью есть треугольник, подобный треугольнику ABC. б) Найдите отношение площадей сечения и треугольника A
  • 75. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь
  • 76. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC||A1C1 и BD||B1D1.
  • 77. Сумма всех ребер параллелепипеда ABCDA1B1C1D1. равна 120 см. Найдите каждое ребро параллелепипеда, если известно, что AB/BC=4/5, BC/BB1=5/6.
  • 78. На рисунке 42 изображен параллелепипед ABCDA1B1C1D1, на ребрах которого отмечены точки М, N, М1 и N1 так, что AM = CN=A1M1 = C1N1. Докажите, что MBNDM1B1N1D1 — параллелепипед.
  • 79. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение: а) плоскостью АВС1; б) плоскостью АСС1. Докажите, что построенные сечения являются параллелограммами.
  • 80. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечения плоскостями АВС1 и DCB1, а также отрезок, по которому эти сечения пересекаются.
  • 81. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте точки М и N соответственно на ребрах BB1 и CC1. Постройте точку пересечения: а) прямой MN с плоскостью ABC; б) прямой AM с плоскостью A1B1C1.
  • 82. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте внутреннюю точку М грани АА1В1В. Постройте сечение параллелепипеда, проходящее через точку М параллельно: а) плоскости основания ABCD; б) грани ВВ1С1С; в) плоскости BDD1.
  • 83. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через: а) ребро СС1 и точку пересечения диагоналей грани AA1D1D; б) точку пересечения диагоналей грани ABCD параллельно плоскости АВ1С1.
  • 84. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через точки В1, D1 и середину ребра CD. Докажите, что построенное сечение — трапеция.
  • 85. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью BKL, где К — середина ребра АА1, a L — середина ребра СС1. Докажите, что построенное сечение— параллелограмм.
  • 86. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через диагональ АС основания параллельно диагонали BD1. Докажите, что если основание параллелепипеда — ромб и углы АВВ1 и СВВ1 прямые, то построенное сечение — равно
  • 87. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью MNK, где точки М, N и К лежат соответственно на ребрах: а) ВВ1, АА1, AD1 б) СС1, AD, ВВ1.

Вопросы к главе I Параллельность прямых и плоскостей.

  • 1. Верно ли утверждение: если две прямые не имеют общих точек, то они параллельны?
  • 2. Точка М не лежит на прямой а. Сколько прямых, не пересекающих прямую а, проходит через точку М? Сколько из этих прямых параллельны прямой а?
  • 3. Прямые а и с параллельны, а прямые а и b пересекаются. Могут ли прямые b и с быть параллельными?
  • 4. Прямая а параллельна плоскости α. Верно ли, что эта прямая: а) не пересекает ни одну прямую, лежащую в плоскости α; б) параллельна любой прямой, лежащей в плоскости α; в) параллельна некоторой прямой, лежащей в плоскости α?
  • 5. Прямая а параллельна плоскости α. Сколько прямых, лежащих в плоскости α, параллельны прямой а? Параллельны ли друг другу эти прямые, лежащие в плоскости α?
  • 6. Прямая а пересекает плоскость α. Лежит ли в плоскости а хоть одна прямая, параллельная α?
  • 7. Одна из двух параллельных прямых параллельна некоторой плоскости. Верно ли утверждение, что и вторая прямая параллельна этой плоскости?
  • 8. Верно ли утверждение: если две прямые параллельны некоторой плоскости, то они параллельны друг другу?
  • 9. Две прямые параллельны некоторой плоскости. Могут ли эти прямые: а) пересекаться? б) быть скрещивающимися?
  • 10. Могут ли скрещивающиеся прямые a и b быть параллельными прямой с?
  • 11. Боковые стороны трапеции параллельны плоскости α. Параллельны ли плоскость α и плоскость трапеции?
  • 12. Две стороны параллелограмма параллельны плоскости α. Параллельны ли плоскость α и плоскость параллелограмма?
  • 13. Могут ли быть равны два непараллельных отрезка, заключенные между параллельными плоскостями?
  • 14. Существует ли тетраэдр, у которого пять углов граней прямые?
  • 15. Существует ли параллелепипед, у которого: а) только одна грань — прямоугольник; б) только две смежные грани — ромбы; в) все углы граней острые; г) все углы граней прямые; д) число всех острых углов граней не равно числу всех тупых углов граней?
  • 16. Какие многоугольники могут получиться в сечении: а) тетраэдра; б) параллелепипеда?

Дополнительные задачи к главе I Параллельность прямых и плоскостей.

  • 88. Параллельные прямые АС и BD пересекают плоскость α соответственно в точках А и В. Точки С и D лежат по одну сторону от плоскости α, AС = 8 см, BD = 6 см, АВ = 4 см. а) Докажите, что прямая CD пересекает плоскость α в некоторой точке
  • 89. Точки А, В, С и D не лежат в одной плоскости. Медианы треугольников ABC и CBD пересекаются соответственно в точках M1 и М2. Докажите, что отрезки AD и М1М2 параллельны.
  • 90. Вершины А и В трапеции ABCD лежат в плоскости α, а вершины С и D не лежат в этой плоскости. Как расположена прямая CD относительно плоскости α, если отрезок АВ является: а) основанием трапеции; б) боковой стороной трапеции?
  • 91. Через каждую из двух параллельных прямых a и b и точку М, не лежащую в плоскости этих прямых, проведена плоскость. Докажите, что эти плоскости пересекаются по прямой, параллельной прямым a и b.
  • 92. Плоскость α и прямая a параллельны прямой b. Докажите, что прямая a либо параллельна плоскости α, либо лежит в ней.
  • 93. Прямые а и b параллельны. Через точку М прямой a проведена прямая MN, отличная от прямой а и не пересекающая прямую b. Каково взаимное расположение прямых MN и b?
  • 94. Даны две скрещивающиеся прямые и точка В, не лежащая на этих прямых. Пересекаются ли плоскости, каждая из которых проходит через одну из прямых и точку В? Ответ обоснуйте.
  • 95. Прямая а параллельна плоскости α. Докажите, что если плоскость β пересекает прямую а, то она пересекает и плоскость α.
  • 96. Докажите, что отрезки параллельных прямых, заключенные между плоскостью и параллельной ей прямой, равны.
  • 97. Докажите, что два угла с соответственно параллельными сторонами либо равны, либо их сумма равна 180°.
  • 98. Прямая а параллельна плоскости α. Существует ли плоскость, проходящая через прямую а и параллельная плоскости α? Если существует, то сколько таких плоскостей? Ответ обоснуйте.
  • 99. Докажите, что три параллельные плоскости отсекают на любых двух пересекающих эти плоскости прямых пропорциональные отрезки.
  • 100. Даны две скрещивающиеся прямые и точка А. Докажите, что через точку А проходит, и притом только одна, плоскость, которая либо параллельна данным прямым, либо проходит через одну из них и параллельна другой.
  • 101. Докажите, что отрезки, соединяющие середины противоположных ребер тетраэдра, пересекаются и точкой пересечения делятся пополам.
  • 102. Докажите, что плоскость α, проходящая через середины двух ребер основания тетраэдра и вершину, не принадлежащую основанию, параллельна третьему ребру основания. Найдите периметр и площадь сечения тетраэдра плоскостью α, если длины всех ре
  • 103. На ребрах DA, DB и DC тетраэдра DABC отмечены точки М, N и Р так, что DM:MA = DN:NB = DP:PC. Докажите, что плоскости MNP и ABC параллельны. Найдите площадь треугольника MNP, если площадь треугольника ABC равна 10 см2 и DM: МА = 2:1.
  • 104. Изобразите тетраэдр ABCD и отметьте точку М на ребре АВ. Постройте сечение тетраэдра плоскостью, проходящей через точку М параллельно прямым АС и BD.
  • 105. Изобразите тетраэдр DABС и отметьте точки М и N на ребрах BD и CD и внутреннюю точку К грани ABC. Постройте сечение тетраэдра плоскостью MNK.
  • 106. Изобразите тетраэдр DABС, отметьте точку К на ребре DC и точки М и N граней ABC и ACD. Постройте сечение тетраэдра плоскостью MNK.
  • 107. Изобразите тетраэдр ABCD и отметьте точку М на ребре АВ. Постройте сечение тетраэдра плоскостью, проходящей через точку М параллельно грани BDC.
  • 108. В тетраэдре DABC биссектрисы трех углов при вершине D пересекают отрезки ВС, СА и АВ соответственно в точках А1, В1 и C1. Докажите, что отрезки АА1, ВВ1 и CC1 пересекаются в одной точке.
  • 109. Две плоскости, каждая из которых содержит два боковых ребра параллелепипеда, не принадлежащих одной грани, пересекаются по прямой а. Докажите, что прямая а параллельна боковым ребрам параллелепипеда и пересекает все его диагонали.
  • 110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.
  • 111. Докажите, что диагональ параллелепипеда меньше суммы трех ребер, имеющих общую вершину.
  • 112. Докажите, что сумма квадратов четырех диагоналей параллелепипеда равна сумме квадратов двенадцати его ребер.
  • 113. По какой прямой пересекаются плоскости сечений A1BCD1 и BDD1B1 параллелепипеда ABCDA1B1C1D1?
  • 114. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте на ребре АВ точку М. Постройте сечение параллелепипеда плоскостью, проходящей через точку М параллельно плоскости АСС1.
  • 115. Точка М лежит на ребре ВС параллелепипеда ABCDA1B1C1D1. Постройте сечение этого параллелепипеда плоскостью, проходящей через точку М параллельно плоскости BDC1.

Глава II Перпендикулярность прямых и плоскостей. §1 Перпендикулярность прямой и плоскости

  • 116. Дан параллелепипед ABCDA1B1C1D1. Докажите, что: а) DC⊥B1C1, и AB⊥A1D1 если ∠BAD =90°; б) АВ⊥СС1 и DD1⊥A1B1, если AB⊥DD1.
  • 117. В тетраэдре ABCD известно, что BC⊥AD. Докажите, что AD⊥MN, где М и N — середины ребер АВ и АС.
  • 118. Точки А, М и О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α. Какие из следующих углов являются прямыми: ∠AOB, ∠MOC, ∠DAM, ∠DOА, ∠BMO?
  • 119. Прямая ОА перпендикулярна к плоскости ОВС, и точка О является серединой отрезка AD. Докажите, что: a) AB = DB; б) AB=AC, если ОВ=ОС; в) OB = OC, если АВ=АС.
  • 120. Через точку О пересечения диагоналей квадрата со стороной а проведена прямая ОК, перпендикулярная к плоскости квадрата. Найдите расстояние от точки К до вершин квадрата, если ОK = b.
  • 121. В треугольнике ABC дано: ∠C = 90°, AC = 6 см, ВС = 8 см, СМ — медиана. Через вершину С проведена прямая СК, перпендикулярная к плоскости треугольника ABC, причем СК = 12 см. Найдите КМ.
  • 122. Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр О этого треугольника проведена прямая ОК, параллельная прямой CD. Известно, что АВ = 16 √3 см, ОK = 12 см, CD = 16 см. Найдите расстояния от точек D и К до вершин А
  • 123. Докажите, что если две плоскости α и β перпендикулярны к прямой а, то они параллельны.
  • 124. Прямая PQ параллельна плоскости α. Через точки Р и Q проведены прямые, перпендикулярные к плоскости α, которые пересекают эту плоскость соответственно в точках P1и Q1. Докажите, что PQ = P1Q1.
  • 125. Через точки Р и Q прямой PQ проведены прямые, перпендикулярные к плоскости α и пересекающие ее соответственно в точках Р1 и Q1. Найдите P1Q1, если PQ = 15 см, РР1 = — 21,5 см, QQ1=33,5 см.
  • 126. Прямая MB перпендикулярна к сторонам АВ и ВС треугольника ABC. Определите вид треугольника MBD, где D — произвольная точка прямой АС.
  • 127. В треугольнике ABC сумма углов A и B равна 90°. Прямая BD перпендикулярна к плоскости ABC. Докажите, что CD⊥AC.
  • 128. Через точку О пересечения диагоналей параллелограмма ABCD проведена прямая ОМ так, что МА = МС, MB = MD. Докажите, что прямая ОМ перпендикулярна к плоскости параллелограмма.
  • 129. Прямая AM перпендикулярна к плоскости квадрата ABCD, диагонали которого пересекаются в точке О. Докажите, что: а) прямая BD перпендикулярна к плоскости АМО; б) MO⊥BD.
  • 130. Через вершину В квадрата ABCD проведена прямая ВМ. Известно, что ∠MBA = ∠MBC=90°, МВ =m, АВ = n. Найдите расстояния от точки М до: а) вершин квадрата; б) прямых АС и BD.
  • 131. В тетраэдре ABCD точка М — середина ребра ВС, АВ = AC, DB = DC. Докажите, что плоскость треугольника ADM перпендикулярна к прямой ВС.
  • 132. Докажите, что если одна из двух параллельных плоскостей перпендикулярна к прямой, то и другая плоскость перпендикулярна к этой прямой.
  • 133. Докажите, что через любую точку пространства проходит только одна плоскость, перпендикулярная к данной прямой.
  • 134. Докажите, что все прямые, проходящие через данную точку М прямой а и перпендикулярные к этой прямой, лежат в плоскости, проходящей через точку М и перпендикулярной к прямой а.
  • 135. Прямая а перпендикулярна к плоскости α и перпендикулярна к прямой b, не лежащей в этой плоскости. Докажите, что b II α.
  • 136. Докажите, что если точка X равноудалена от концов данного отрезка АВ, то она лежит в плоскости, проходящей через середину отрезка АВ и перпендикулярной к прямой АВ.
  • 137. Докажите, что через каждую из двух взаимно перпендикулярных скрещивающихся прямых проходит плоскость, перпендикулярная к другой прямой.

Глава II Перпендикулярность прямых и плоскостей. §2 Перпендикуляр и наклонные. Угол между прямой и плоскостью.

  • 138. Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен φ. а) Найдите наклонную и ее проекцию на данную плоскость, если перпендикуляр равен d. б) Найдите перпендикуляр и проекцию наклонной, если наклон
  • 139. Из некоторой точки проведены к плоскости две наклонные. Докажите, что: а) если наклонные равны, то равны и их проекции; б) если проекции наклонных равны, то равны и наклонные; в) если наклонные не равны, то большая наклонная имеет большую проекцию.
  • 140. Из точки А, не принадлежащей плоскости α, проведены к этой плоскости перпендикуляр АО и две наклонные АВ и АС. Известно, что ∠OAB= ∠BAС = 60°, АО = 1,5 см. Найдите расстояние между основаниями наклонных.
  • 141. Один конец данного отрезка лежит в плоскости ос, а другой находится от нее на расстоянии 6 см. Найдите расстояние от середины данного отрезка до плоскости а.
  • 142. Концы отрезка отстоят от плоскости α на расстояниях 1 см и 4 см. Найдите расстояние от середины отрезка до плоскости α.
  • 143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки М до плоскости ABC, если АВ = 6 см.
  • 144. Прямая а параллельна плоскости α. Докажите, что все точки прямой а равноудалены от плоскости α.
  • 145. Через вершину А прямоугольного треугольника ABC с прямым углом С проведена прямая AD, перпендикулярная к плоскости треугольника, а) Докажите, что треугольник CBD прямоугольный, б) Найдите BD, если ВС = а, DC =b.
  • 146. Прямая а пересекает плоскость α в точке М и не перпендикулярна к этой плоскости. Докажите, что в плоскости αчерез точку М проходит прямая, перпендикулярная к прямой а, и притом только одна.
  • 147. Из точки М проведен перпендикуляр МВ к плоскости прямоугольника ABCD. Докажите, что треугольники AMD и MCD прямоугольные.
  • 148. Прямая АК перпендикулярна к плоскости правильного треугольника ABC, М — середина стороны ВС. Докажите, что MK⊥BC.
  • 149. Отрезок AD перпендикулярен к плоскости равнобедренного треугольника ABC. Известно, что АВ =АС = 5 см, ВС= 6 см, AD = 12 см. Найдите расстояния от концов отрезка AD до прямой ВС.
  • 150. Через вершину А прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника. Известно, что KD = 6 см, КВ = 7 см, КС=9 см. Найдите: а) расстояние от точки К до плоскости прямоугольника ABCD; б) расстояние между прямыми АК и CD
  • 151. Прямая CD перпендикулярна к плоскости треугольника ABC. Докажите, что: а) треугольник ABC является проекцией треугольника ABD на плоскость АВС; б) если CH — высота треугольника ABC, то DH — высота треугольника ABD.
  • 152. Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если BF = 8 дм, АВ = 4 дм.
  • 153. Докажите, что прямая а, проведенная в плоскости а через основание М наклонной AM перпендикулярно к ней, перпендикулярна к ее проекции НМ (см. рис. 53).
  • 154. Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 см, АС=10 см, ВС = ВА = 13 см. Найдите: а) расстояние от точки D до прямой AC; б) площадь треугольника ACD.
  • 155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC проведена прямая СМ, перпендикулярная к его плоскости. Найдите расстояние от точки М до прямой АВ, если АС = 4 см, а СМ = 2 √7 см.
  • 156. Один из катетов прямоугольного треугольника ABC равен т, а острый угол, прилежащий к этому катету, равен φ. Через вершину прямого угла С проведена прямая CD, перпендикулярная к плоскости этого треугольника, CD = n. Найдите расстояние от точки D д
  • 157. Прямая ОК перпендикулярна к плоскости ромба ABCD, диагонали которого пересекаются в точке О. а) Докажите, что расстояния от точки К до всех прямых, содержащих стороны ромба, равны, б) Найдите это расстояние, если ОК = 4,5 дм, АС = 6 дм, BD = 8 дм.
  • 158. Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. Найдите расстояния от точки М до прямых, содержащих стороны ромба, если AB = 25 см, ∠BAD = 60°, BM =12,5 см.
  • 159. Прямая ВМ перпендикулярна к плоскости прямоугольника ABCD. Докажите, что прямая, по которой пересекаются плоскости ADM и ВСМ, перпендикулярна к плоскости АВМ.
  • 160. Концы отрезка АВ лежат на двух параллельных плоскостях, расстояние между которыми равно d, причем d<AB. Докажите, что проекции отрезка АВ на эти плоскости равны. Найдите эти проекции, если АВ = 13 см, d=5 см.
  • 161. Луч ВА не лежит в плоскости неразвернутого угла CBD. Докажите, что если ∠АВС= ∠ABD, причем ∠ABC < 90°, то проекцией луча ВА на плоскость CBD является биссектриса угла CBD.
  • 162. Прямая MA проходит через точку А плоскости α и образует с этой плоскостью угол φ0≠90°. Докажите, что φ0 является наименьшим из всех углов, которые прямая МА образует с прямыми, проведенными в плоскости α через точку А.
  • 163. Наклонная АМ, проведенная из точки А к данной плоскости, равна d. Чему равна проекция этой наклонной на плоскость, если угол между прямой АМ и данной плоскостью равен: а) 45°; б) 60°; в) 30°?
  • 164. Под углом φ к плоскости α проведена наклонная. Найдите φ, если известно, что проекция наклонной вдвое меньше самой наклонной.
  • 165. Из точки А, удаленной от плоскости γ на расстояние d, проведены к этой плоскости наклонные АВ и АС под углом 30° к плоскости. Их проекции на плоскость γ образуют угол в 120°. Найдите ВС.

Глава II Перпендикулярность прямых и плоскостей. §3 Двугранный угол. Перпендикулярность плоскостей.

  • 166. Неперпендикулярные плоскости α и β пересекаются по прямой MN. В плоскости β из точки А проведен перпендикуляр АВ к прямой MN и из той же точки А проведен перпендикуляр АС к плоскости α. Докажите, что ∠ABC — линейный угол дву
  • 167. В тетраэдре DABС все ребра равны, точка М— середина ребра АС. Докажите, что ∠DMB—линейный угол двугранного угла BACD.
  • 168. Двугранный угол равен φ. На одной грани этого угла лежит точка, удаленная на расстояние d от плоскости другой грани. Найдите расстояние от этой точки до ребра двугранного угла.
  • 169. Даны два двугранных угла, у которых одна грань общая, а две другие грани являются различными полуплоскостями одной плоскости. Докажите, что сумма этих двугранных углов равна 180°.
  • 170. Из вершины В треугольника ABC, сторона АС которого лежит в плоскости а, проведен к этой плоскости перпендикуляр BB1. Найдите расстояния от точки В до прямой АС и до плоскости α, если АВ = 2 см, ∠ВАС= 150° и двугранный угол ВАСВ1 равен 45°.
  • 171. Гипотенуза прямоугольного равнобедренного треугольника лежит в плоскости а, а катет наклонен к этой плоскости под углом 30°. Найдите угол между плоскостью α и плоскостью треугольника.
  • 172. Катет АС прямоугольного треугольника ABC с прямым углом С лежит в плоскости α, а угол между плоскостями α и ABC равен 60°. Найдите расстояние от точки В до плоскости α, если АС = 5 см, АВ = 13 см.
  • 173. Ребро CD тетраэдра ABCD перпендикулярно к плоскости ABC, АВ = ВС = АС = 6, BD = 3√7. Найдите двугранные углы DACB, DABC, BDCA.
  • 174. Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC и ACB прямые, AC = СВ = 5, DB = 5√5.
  • 175. Докажите, что если все ребра тетраэдра равны, то все его двугранные углы также равны. Найдите эти углы.
  • 176. Через сторону AD ромба ABCD проведена плоскость ADM так, что двугранный угол BADM равен 60°. Найдите сторону ромба, если ∠BAD = 45° и расстояние от точки В до плоскости ADM равно 4√3.
  • 177. Докажите, что плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
  • 178. Плоскости α и β взаимно перпендикулярны и пересекаются по прямой с. Докажите, что любая прямая плоскости α, перпендикулярная к прямой с, перпендикулярна к плоскости β.
  • 179. Плоскости α и β взаимно перпендикулярны. Через некоторую точку плоскости α проведена прямая, перпендикулярная к плоскости β. Докажите, что эта прямая лежит в плоскости α.
  • 180. Докажите, что плоскость и не лежащая в ней прямая, перпендикулярные к одной и той же плоскости, параллельны.
  • 181. Плоскости α и β пересекаются по прямой а. Из точки М проведены перпендикуляры МА и MB соответственно к плоскостям α и β. Прямая а пересекает плоскость АМВ в точке С. Докажите, что MC⊥a.
  • 182. Плоскости α и β взаимно перпендикулярны и пересекаются по прямой а. Из точки М проведены перпендикуляры MA и MB к этим плоскостям. Прямая а пересекает плоскость АМВ в точке С. а) Докажите, что четырехугольник АСВМ является прямоугольником,
  • 183. Плоскости α и β пересекаются по прямой а и перпендикулярны к плоскости γ. Докажите, что прямая а перпендикулярна к плоскости γ.
  • 184. Общая сторона АВ треугольников ABC и ABD равна 10 см. Плоскости этих треугольников взаимно перпендикулярны. Найдите CD, если треугольники: а) равносторонние; б) прямоугольные равнобедренные с гипотенузой АВ.
  • 185. Прямая а не перпендикулярна к плоскости α. Докажите, что существует плоскость, проходящая через прямую а и перпендикулярная к плоскости α.
  • 186. Докажите, что существует, и притом только одна, прямая, пересекающая две данные скрещивающиеся прямые а и b и перпендикулярная к каждой из них.
  • 187. Найдите диагональ прямоугольного параллелепипеда, если его измерения равны: а) 1, 1, 2; б) 8, 9, 12; в) √39. 7, 9.
  • 188. Ребро куба равно а. Найдите диагональ куба.
  • 189. Найдите расстояние от вершины куба до плоскости любой грани, в которой не лежит эта вершина, если: а) диагональ грани куба равна m; б) диагональ куба равна d.
  • 190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1С;б) ADD1B; в) А1ВВ1К, где К — середина ребра A1D1.
  • 191. Дан куб ABCDA1B1C1D1. Докажите, что плоскости АВС1 и A1B1D1 перпендикулярны.
  • 192. Найдите тангенс угла между диагональю куба и плоскостью одной из его граней.
  • 193. В прямоугольном параллелепипеде ABCDA1B1C1D1 дано: D1B = d, АС = m, АВ=n. Найдите расстояние между: а) прямой A1C1 и плоскостью ABC; б) плоскостями ABB1 и DCC1; в) прямой DD1 и плоскостью АСС1;
  • 194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими: а) диагональ куба и ребро куба; б) диагональ куба и диагональ грани куба.
  • 195. Найдите измерения прямоугольного параллелепипеда ABCDA1B1C1D1, если АС1 = 12 см и диагональ BD1 составляет с плоскостью грани AA1D1D угол в 30°, а с ребром DD1 — угол в 45°.
  • 196. Изобразите куб ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через: а) ребро АА1 и перпендикулярной к плоскости BB1D1; б) ребро АВ и перпендикулярной к плоскости CDA1.

Вопросы к главе II Перпендикулярность прямых и плоскостей.

  • 1. Верно ли утверждение: если две прямые в пространстве перпендикулярны к третьей прямой, то эти прямые параллельны? Верно ли это утверждение при условии, что все три прямые лежат в одной плоскости?
  • 2. Параллельные прямые b и c лежат в плоскости α, а прямая а перпендикулярна к прямой b. Верно ли утверждение: а) прямая а перпендикулярна к прямой с; б) прямая а пересекает плоскость α?
  • 3. Прямая а перпендикулярна к плоскости α, а прямая b не перпендикулярна к этой плоскости. Могут ли прямые а и b быть параллельными?
  • 4. Прямая а параллельна плоскости α, а прямая b перпендикулярна к этой плоскости. Верно ли утверждение, что прямые а и b взаимно перпендикулярны?
  • 5. Прямая а параллельна плоскости α, а прямая b перпендикулярна к этой плоскости. Существует ли прямая, перпендикулярная к прямым a и b?
  • 6. Верно ли утверждение, что все прямые, перпендикулярные к данной плоскости и пересекающие данную прямую, лежат в одной плоскости?
  • 7. Могут ли две плоскости, каждая из которых перпендикулярна к третьей плоскости, быть: а) параллельными плоскостями; б) перпендикулярными плоскостями?
  • 8. Можно ли через точку пространства провести три плоскости, каждые две из которых взаимно перпендикулярны?
  • 9. Диагональ квадрата перпендикулярна к некоторой плоскости. Как расположена другая диагональ квадрата по отношению к этой плоскости?
  • 10. Сколько двугранных углов имеет: а) тетраэдр; б) параллелепипед?

Дополнительные задачи к главе II Перпендикулярность прямых и плоскостей.

  • 197. Отрезок ВМ перпендикулярен к плоскости прямоугольника ABCD. Докажите, что прямая CD перпендикулярна к плоскости MBС.
  • 198. Точка А лежит в плоскости α, а точка В удалена от этой плоскости на расстояние 9 см. Точка М делит отрезок АВ в отношении 4:5, считая от точки А. Найдите расстояние от точки М до плоскости α.
  • 199. Точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого треугольника. Докажите, что прямая SM, где М — середина гипотенузы, перпендикулярна к плоскости треугольника.
  • 200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около многоугольника, и перпендикулярна к плоскости многоугольника, равноудалена от вершин этого многоугольника.
  • 201. Найдите угол между скрещивающимися прямыми АВ и PQ, если точки Р и Q равноудалены от концов отрезка АВ.
  • 202. Точка удалена от каждой из вершин прямоугольного треугольника на расстояние 10 см. На каком расстоянии от плоскости треугольника находится эта точка, если медиана, проведенная к гипотенузе, равна 5 см?
  • 203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная к плоскости треугольника. Найдите расстояние от точки К до сторон треугольника, если АВ=ВС=10 см, АС =12 см, ОК = 4 см.
  • 204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр О этого треугольника, ОМ = а, ∠MCO = φ. Найдите: а) расстояние от точки М до каждой из вершин треугольника ABC и до прямых АВ, ВС и СA; б) длину окружно
  • 205. Через вершину С прямого угла прямоугольного треугольника ABC проведена прямая CD, перпендикулярная к плоскости этого треугольника. Найдите площадь треугольника ABD, если СA =3 дм, СВ = 2 дм, CD= 1 дм.
  • 206. Стороны треугольника равны 17 см, 15 см и 8 см. Через вершину Л меньшего угла треугольника проведена прямая АМ, перпендикулярная к его плоскости. Определите расстояние от точки М до прямой, содержащей меньшую сторону треугольника, если известно, что
  • 207. В треугольнике ABC дано: АВ = ВС = 13 см, AС = 10 см. Точка М удалена от прямых АВ, ВС и АС на 8&frac23; см. Найдите расстояние от точки М до плоскости ABC, если ее проекция на эту плоскость лежит внутри треугольника.
  • 208. Из точки К, удаленной от плоскости α на 9 см, проведены к плоскости α наклонные KL и КМ, образующие между собой прямой угол, а с плоскостью α — углы в 45° и 30° соответственно. Найдите отрезок LM.
  • 209. Углы между равными отрезками АВ и АС и плоскостью α, проходящей через точку А, равны соответственно 40° и 50°. Сравните расстояния от точек В и С до плоскости α.
  • 210. На рисунке 66 двугранные углы НАВР и PABQ равны. Докажите, что каждая точка плоскости АВР равноудалена от плоскостей АВН и ABQ.
  • 211. Плоскости правильного треугольника KDM и квадрата KMNP взаимно перпендикулярны. Найдите DN, если КМ = а.
  • 212. Точка С является проекцией точки D на плоскость треугольника ABC. Докажите, что площадь треугольника ABD равна S/cosα, где S — площадь треугольника ABC, а α — угол между плоскостями ABC и ABD.
  • 213. Правильные треугольники ABC и DBC расположены так, что вершина D проектируется в центр треугольника ABC. Вычислите угол между плоскостями этих треугольников.
  • 214. Проекцией прямоугольника ABCD на плоскость α является квадрат ABC1D1. Вычислите угол φ между плоскостью α и плоскостью прямоугольника ABCD, если АВ:ВС = 1:2.
  • 215. Параллельные прямые АВ и CD лежат в разных гранях двугранного угла, равного 60°. Точки А и D удалены от ребра двугранного угла соответственно на 8 см и 6,5 см. Найдите расстояние между прямыми АВ и CD.
  • 216. Точки А и В лежат на ребре данного двугранного угла, равного 120°. Отрезки АС и ВD проведены в разных гранях и перпендикулярны к ребру двугранного угла. Найдите отрезок CD, если AB=AC = BD = a.
  • 217. Сумма площадей трех граней прямоугольного параллелепипеда, имеющих общую вершину, равна 404 дм2, а его ребра пропорциональны числам 3, 7 и 8. Найдите диагональ параллелепипеда.

Глава III Многогранники. §1 Понятие многогранника. Призма.

  • 218. Докажите, что: а) у прямой призмы все боковые грани — прямоугольники; б) у правильной призмы все боковые грани — равные прямоугольники.
  • 219. В прямоугольном параллелепипеде стороны основания равны 12 см и 5 см. Диагональ параллелепипеда образует с плоскостью основания угол в 45°. Найдите боковое ребро параллелепипеда.
  • 220. Основанием прямого параллелепипеда является ромб с диагоналями 10 см и 24 см, а высота параллелепипеда равна 10 см. Найдите большую диагональ параллелепипеда.
  • 221. Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания.
  • 222. Основанием прямой призмы является равнобедренная трапеция с основаниями 25 см и 9 см и высотой 8 см. Найдите двугранные углы при боковых ребрах призмы.
  • 223. Через два противолежащих ребра куба проведено сечение, площадь которого равна 64 √2 см2. Найдите ребро куба и его диагональ.
  • 224. Диагональ правильной четырехугольной призмы наклонена к плоскости основания под углом 60°. Найдите площадь сечения, проходящего через сторону нижнего основания и противолежащую сторону верхнего основания, если диагональ основания равна 4 √2 см.
  • 225. Диагональ правильной четырехугольной призмы образует с плоскостью боковой грани угол в 30°. Найдите угол между диагональю и плоскостью основания.
  • 226. В правильной четырехугольной призме через диагональ основания проведено сечение параллельно диагонали призмы. Найдите площадь сечения, если сторона основания призмы равна 2 см, а ее высота равна 4 см.
  • 227. Основание призмы — правильный треугольник ABC. Боковое ребро АА1 образует равные углы со сторонами основания АС и АВ. Докажите, что: а) ВС⊥АА1; б) СС1В1В — прямоугольник.
  • 228. Основанием наклонной призмы АВСА1В1С1 является равнобедренный треугольник ABC, в котором АС = АВ= 13 см, BС=10 см, а боковое ребро призмы образует с плоскостью основания угол в 45°. Проекцией вершины А1 является точка пересечения медиан треугольника
  • 229. В правильной n-угольной призме сторона основания равна а и высота равна h. Вычислите площадь боковой и полной поверхностей призмы, если: а) n = 3, а=10 см, h= 15 см; б) n = 4, а= 12 дм, h = 8 дм; в) n = 6, а =23 см, h = 5 дм; г) n = 5, а = 0,4 м, h =
  • 230. Основание прямой призмы — треугольник со сторонами 5 см и 3 см и углом, равным 120°, между ними. Наибольшая из площадей боковых граней равна 35 см2. Найдите площадь боковой поверхности призмы.
  • 231. Стороны основания прямого параллелепипеда равны 8 см и 15 см и образуют угол в 60°. Меньшая из площадей диагональных сечений равна 130 см2. Найдите площадь поверхности параллелепипеда.
  • 232. Диагональ прямоугольного параллелепипеда, равная d, образует с плоскостью основания угол φ, а с меньшей боковой гранью — угол α. Найдите площадь боковой поверхности параллелепипеда.
  • 233. Основанием прямой призмы АВСA1B1C1 является прямоугольный треугольник ABC с прямым углом В. Через ребро ВВ1 проведено сечение BB1D1D, перпендикулярное к плоскости грани АA1C1C. Найдите площадь сечения, если AA1 = 10 см, AD = 27 см, DC= 12 см.
  • 234. Основанием прямой призмы является прямоугольный треугольник. Через середину гипотенузы перпендикулярно к ней проведена плоскость. Найдите площадь сечения, если катеты равны 20 см и 21 см, а боковое ребро равно 42 см.
  • 235. Основанием прямой призмы является прямоугольный треугольник с острым углом φ. Через катет, противолежащий этому углу, и через противоположную этому катету вершину основания проведено сечение, составляющее угол Θ с плоскостью основания. Найд
  • 236. Докажите, что площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
  • 237. Боковое ребро наклонной четырехугольной призмы равно 12 см, а перпендикулярным сечением является ромб со стороной 5 см. Найдите площадь боковой поверхности призмы.
  • 238. В наклонной треугольной призме две боковые грани взаимно перпендикулярны, а их общее ребро, отстоящее от двух других боковых ребер на 12 см и 35 см, равно 24 см. Найдите площадь боковой поверхности призмы.

Глава III Многогранники. § 2. Пирамида

  • 239. Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые ребра пирамиды, если высота ее проходит через точку пересечения диагоналей основания и равна 7 см.
  • 240. Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см2. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды.
  • 241. Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь полной поверхности пирамиды.
  • 242. Основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно к плоскости основания. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найд
  • 243. Основанием пирамиды DABC является треугольник ABC, у которого АВ = АС= 13 см, ВС=10 см; ребро AD перпендикулярно к плоскости основания и равно 9 см. Найдите площадь боковой поверхности пирамиды.
  • 244. Основанием пирамиды DABC является прямоугольный треугольник ABC, у которого гипотенуза АВ равна 29 см, катет АС равен 21 см. Ребро DA перпендикулярно к плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.
  • 245. Основанием пирамиды является прямоугольник, диагональ которого равна 8 см. Плоскости двух боковых граней перпендикулярны к плоскости основания, а две другие боковые грани образуют с основанием углы 30° и 45°. Найдите площадь поверхности пирамиды.
  • 246. Высота треугольной пирамиды равна 40 см, а высота каждой боковой грани, проведенная из вершины пирамиды, равна 41 см. а) Докажите, что высота пирамиды проходит через центр окружности, вписанной в ее основание; б) Найдите площадь основания пирамиды, е
  • 247. Двугранные углы при основании пирамиды равны. Докажите, что: а) высота пирамиды проходит через центр окружности, вписанной в основание; б) высоты всех боковых граней, проведенные из вершины пирамиды, равны; в) площадь боковой поверхности пирамиды рав
  • 248. Основанием пирамиды является треугольник со сторонами 12 см, 10 см и 10 см. Каждая боковая грань наклонена к основанию под углом 45°. Найдите площадь боковой поверхности пирамиды.
  • 249. В пирамиде все боковые ребра равны между собой. Докажите, что: а) высота пирамиды проходит через центр окружности, описанной около основания; б) все боковые ребра пирамиды составляют равные углы с плоскостью основания.
  • 250. Основанием пирамиды является равнобедренный треугольник с углом 120°. Боковые ребра образуют с ее высотой, равной 16 см, углы в 45°. Найдите площадь основания пирамиды.
  • 251. Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой ВС. Боковые ребра пирамиды равны друг другу, а ее высота равна 12 см. Найдите боковое ребро пирамиды, если ВС = 10 см.
  • 252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 см, высота АН равна 9 см. Известно также, что DA = DB = DC=13 см. Найдите высоту пирамиды.
  • 253. Основанием пирамиды является равнобедренная трапеция с основаниями 6 см и 4√6 см и высотой 5 см. Каждое боковое ребро пирамиды равно 13 см. Найдите ее высоту.
  • 254. В правильной Треугольной пирамиде сторона основания равна а, высота равна Н. Найдите: а) боковое ребро пирамиды; б) плоский угол при вершине пирамиды; в) угол между боковым ребром и плоскостью основания пирамиды; г) угол между боковой гранью и основа
  • 255. В правильной треугольной пирамиде сторона основания равна 8 см, а плоский угол при вершине равен φ. Найдите высоту пирамиды.
  • 256. В правильной четырехугольной пирамиде сторона основания равна m, а плоский угол при вершине равен α. Найдите: а) высоту пирамиды; б) боковое ребро; в) угол Между боковой гранью и плоскостью основания; г) двугранный угол при боковом ребре пирами
  • 257. Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45°. Найдите площадь поверхности пирамиды.
  • 258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания. Найдите площадь поверхности пирамиды, если боковое ребро равно 12 см.
  • 259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60°. Найдите боковое ребро пирамиды.
  • 260. В правильной треугольной пирамиде DABC через боковое ребро DC и высоту DO пирамиды проведена плоскость α. Докажите, что: а) ребро АВ перпендикулярно к плоскости α; б) перпендикуляр, проведенный из вершины С к апофеме грани ADB, является п
  • 261. Докажите, что в правильной треугольной пирамиде скрещивающиеся ребра взаимно перпендикулярны.
  • 262. Докажите, что плоскость, проходящая через высоту правильной пирамиды и высоту боковой грани, перпендикулярна к плоскости боковой грани.
  • 263. В правильной пирамиде MABCD точки К, L и N лежат на ребрах ВС, МС и AD, KN||BA, KL||BM. а) Покройте сечение пирамиды плоскостью KLN и определите вид сечения. б) Докажите, что плоскость KLN параллельна плоскости АМВ.
  • 264. Найдите площадь боковой поверхности правильной шестиугольной пирамиды, если сторона ее основания равна а, а площадь боковой грани равна площади сечения, проведенного через вершину пирамиды и большую диагональ основания.
  • 265. В правильной треугольной пирамиде боковое ребро наклонено к плоскости основания под углом 60°. Через сторону основания проведена плоскость под углом 30° к плоскости основания. Найдите площадь сечения, если сторона основания равна 12 см.
  • 266. Основанием пирамиды, высота которой равна 2 дм, а боковые ребра равны друг другу, является прямоугольник со сторонами 6 дм и 8 дм. Найдите площадь сечения, проведенного через диагональ основания параллельно боковому ребру.
  • 267. Пирамида пересечена плоскостью, параллельной основанию. Докажите, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.
  • 268. Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 4 дм, а площадь ее полной поверхности равна 186 дм2. Найди
  • 269. Стороны оснований правильной треугольной усеченной пирамиды равны 4 дм и 2 дм, а боковое ребро равно 2 дм. Найдите высоту и апофему пирамиды.
  • 270. Основаниями усеченной пирамиды являются правильные треугольники со сторонами 5 см и 3 см. Одно из боковых ребер перпендикулярно к плоскости основания и равно 1 см. Найдите площадь боковой поверхности усеченной пирамиды.

Глава III Многогранники. § 2. Пирамида ПРАКТИЧЕСКИЕ ЗАДАНИЯ

Глава III Многогранники. § 2. Пирамида ВОПРОСЫ И ЗАДАЧИ

Глава III Многогранники. § 3. Правильные многогранники

  • 279. Найдите угол между двумя диагоналями граней куба, имеющими общий конец.
  • 280. Ребро куба равно а. Найдите площадь сечения, проходящего через диагонали двух его граней.
  • 281. В кубе ABCDA1B1C1D1 из вершины D1 проведены диагонали граней D1A, D1C и D1B1 и концы их соединены отрезками, Докажите, что многогранник D1AB1C—правильный тетраэдр. Найдите отношение площадей поверхностей куба и тетраэдра.
  • 282. Найдите угол между двумя ребрами правильного октаэдра, которые имеют общую вершину, но не принадлежат одной грани (см. рис. 82).
  • 283. В правильном тетраэдре DABC ребро равно а. Найдите площадь сечения тетраэдра плоскостью, проходящей через центр грани ABC: а) параллельно грани BDC; б) перпендикулярно к ребру AD.
  • 284. От каждой вершины правильного тетраэдра с ребром 2 отсекают правильный тетраэдр с ребром 1. Какая фигура получится в результате?
  • 285. Докажите, что в правильном тетраэдре отрезки, соединяющие центры граней, равны друг другу.
  • 286. В правильном тетраэдре h — высота, m — ребро, а n — расстояние между центрами его граней. Выразите: а) m через h; б) n через m.
  • 287. Ребро правильного октаэдра равно а. Найдите расстояние между: а) двумя его противоположными вершинами; б) центрами двух смежных граней; в) противоположными гранями.
  • Вопросы к главе III

Глава III Многогранники. Дополнительные задачи

  • 288. Докажите, что число вершин любой призмы четно, а число ребер кратно 3.
  • 289. Докажите, что площадь полной поверхности куба равна 2d2, где d — диагональ куба.
  • 290. Угол между диагональю основания прямоугольного параллелепипеда, равной l, и одной из сторон основания равен φ. Угол между этой стороной и диагональю параллелепипеда равен 0. Найдите площадь боковой поверхности данного параллелепипеда.
  • 291. В прямоугольном параллелепипеде диагональ, равная d, образует с плоскостью основания угол φ, а с одной из сторон основания — угол Θ. Найдите площадь боковой поверхности параллелепипеда.
  • 292. В правильной четырехугольной призме сторона основания равна 6 см, боковое ребро равно 8 см. Найдите расстояние от стороны основания до не пересекающей ее диагонали призмы.
  • 293. В правильной четырехугольной призме ABCDA1B1C1D1 диагонали B1D и D1B взаимно перпендикулярны. Докажите, что угол между диагоналями А1С и B1D призмы равен 60°.
  • 294. Правильная четырехугольная призма пересечена плоскостью, содержащей две ее диагонали. Площадь полученного сечения равна So, а сторона основания равна а. Вычислите площадь боковой поверхности призмы.
  • 295. Основанием наклонного параллелепипеда ABCDA1B1C1D1 является ромб. Боковое ребро СС1 составляет равные углы со сторонами основания CD и СВ. Докажите, что: a) CC1⊥BD; б) BB1D1D — прямоугольник; в) BD⊥АА1С1; г) плоскости АА1С1 и BB1D1 взаимно
  • 296. Высота правильной треугольной призмы равна h. Плоскость α, проведенная через среднюю линию нижнего основания и параллельную ей сторону верхнего основания, составляет с плоскостью нижнего основания острый двугранный угол φ. Найдите площадь с
  • 297. Основанием треугольной призмы АВСА1В1С1 является правильный треугольник ABC, BD — высота этого треугольника, а вершина А1 проектируется в его центр. Докажите, что: a) A1BD⊥АА1С1; б) АА1O⊥ВВ1С; в) грань ВВ1С1С — прямоугольник.
  • 298. Основанием параллелепипеда с боковым ребром b является квадрат со стороной с. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания. Найдите площадь полной поверхности параллелепипеда.
  • 299. Найдите высоту правильной треугольной пирамиды, если сторона основания равна т, а площадь боковой поверхности вдвое больше площади основания.
  • 300. В правильной треугольной пирамиде DABC точки Е, F и Р — середины сторон ВС, АВ и AD. Определите вид сечения, проходящего через эти точки, и найдите его площадь, если сторона основания пирамиды равна с, боковое ребро равно b.
  • 301. Двугранный угол при боковом ребре правильной треугольной пирамиды DABC равен 120°. Расстояние от вершины B до бокового ребра DA равно 16 см. Найдите апофему пирамиды.
  • 302. Основанием пирамиды является параллелограмм со сторонами 3 см к 7 см и одной из диагоналей 6 см. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 4 см. Найдите боковые ребра пирамиды.
  • 303. Основанием пирамиды является ромб. Две боковые грани перпендикулярны к плоскости основания и образуют двугранный угол в 120°, а две другие боковые грани наклонены к плоскости основания под углом в 30°. Найдите площадь поверхности пирамиды, если ее вы
  • 304. В правильной четырехугольной пирамиде плоский угол при вершине равен 60°. Докажите, что двугранный угол между боковой гранью и основанием пирамиды вдвое меньше двугранного угла при боковом ребре.
  • 305. В правильной четырехугольной пирамиде высота равна h, плоский угол при вершине равен α. Найдите площадь боковой поверхности пирамиды.
  • 306. Высота правильной четырехугольной пирамиды равна h и составляет угол φ с плоскостью боковой грани. Найдите площадь полной поверхности пирамиды.
  • 307. В правильной пирамиде MABCD AM = b, AD = a. а) Постройте сечение пирамиды плоскостью α, проходящей через диагональ BD основания параллельно ребру MA, и найдите площадь сечения. б) Докажите, что точки М и С равноудалены от плоскости α.
  • 308. Основанием пирамиды является ромб со стороной 5 см и меньшей диагональю 6 см. Высота пирамиды, равная 3,2 см,проходит через точку пересечения диагоналей ромба. Найдите высоты граней пирамиды.
  • 309. Основанием пирамиды с равными боковыми ребрами является прямоугольник со сторонами 6 дм и 8 дм. Высота пирамиды равна 6 дм. Найдите площадь сечения, проведенного через меньшую сторону и середину высоты.
  • 310. В пирамиде DABC ребро DA перпендикулярно к плоскости ABC. Найдите площадь боковой поверхности пирамиды, если АВ=АС = 25 см, BC = 40 см, АН = 8 см, где АН — высота пирамиды.
  • 311. Основанием пирамиды DABC является треугольник со сторонами АС= 13 см, АВ = 15 см, СВ= 14 см. Боковое ребро DA перпендикулярно к плоскости основания и равно 9 см. а) Найдите площадь полной поверхности пирамиды. б) Докажите, что основание перпендикуляр
  • 312. В правильной n-угольной пирамиде боковые грани составляют с плоскостью основания угол φ. Найдите тангенс угла между плоскостью основания и боковым ребром.
  • 313. Стороны оснований правильной треугольной усеченной пирамиды равны 12 дм и 6 дм, а ее высота 1 дм. Найдите площадь боковой поверхности пирамиды.
  • 314. В правильной четырехуголькой усеченной пирамиде высота равна 63 см, апофема — 65 см, а стороны оснований относятся как 7:3. Найдите стороны оснований пирамиды.
  • 315. Докажите, что центры граней правильного октаэдра являются вершинами куба.
  • 316. Докажите, что центры граней правильного тетраэдра являются вершинами другого правильного тетраэдра.
  • 317. Докажите, что центры граней куба являются вершинами правильного октаэдра.
  • 318. Докажите, что сумма двугранного угла правильного тетраэдра и двугранного угла правильного октаэдра равна 180°.
  • 319. Сколько плоскостей симметрии, проходящих через данную вершину, имеет правильный тетраэдр?

Глава IV. Векторы в пространстве § 1. Понятие вектора в пространстве

  • 320. В тетраэдре ABCD точки М, N и К— середины ребер АС. ВС и CD соответственно, АВ =3 см, ВС = 4 см, BD=5 см. Найдите длины векторов: а) АВ, ВС, BD, NM, BN, NK; б) СВ, BA, DB, NC, KN.
  • 321. Измерения прямоугольного параллелепипеда ABCDA1B1C1D1 таковы: AD = 8 см. АВ = 9 см и АА1 — 12 см. Найдите длины векторов: а) СС1, СВ, CD; б) DC1, DB, DB1.
  • 322. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Точки М и К — середины ребер B1C1 и A1D1. Укажите на этом рисунке все пары: а) сонаправленных векторов; б) противоположно направленных векторов; в) равных векторов.
  • 323. На рисунке 98 изображен тетраэдр ABCD, ребра которого равны. Точки М, N, Р и Q — середины сторон АВ, AD, DC, ВС. а) Выпишите все пары равных векторов, изображенных на этом рисунке, б) Определите вид четырехугольника MNPQ.
  • 324. Справедливо ли утверждение: а) два вектора, коллинеарные ненулевому вектору, коллинеарны между собой; б) два вектора, сонаправленные с ненулевым вектором, сонаправлены; в) два вектора, коллинеарные ненулевому вектору, сонаправлены?
  • 325. Известно, что АА1=ВВ1. Как расположены по отношению друг к другу: а) прямые АВ и А1В1; б) прямая АВ и плоскость, проходящая через точки A1 и В1; в) плоскости, одна из которых проходит через точки A и B, а другая проходит через точки А1 и В1?
  • 326. На рисунке 97 изображен параллелепипед, точки М и К — середины ребер В1С1 и A1D1. Назовите вектор, который получится, если отложить: а) от точки С вектор, равный DD1; б) от точки D вектор, равный СМ; в) от точки А1 вектор, равный АС; г) от точки С1 в

Глава IV. Векторы в пространстве § 2. Сложение и вычитание векторов. Умножение вектора на число

  • 327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: а) AB + A1D1; б) AB + AD1; в) DA + B1B; г) DD1+DB; д) DB1+ ВС.
  • 328. Дан тетраэдр ABCD. Докажите, что: а) АВ + BD=AC + CD; б) AB + BC = DC + AD; в) DC + BD = AC + BA.
  • 329. Назовите все векторы, образованные ребрами параллелепипеда ABCDA1B1C1D1, которые: а) противоположны вектору СВ; б) противоположны вектору B1A; в) равны вектору — DC; г) равны вектору — А1В1.
  • 330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1, AD соответственно через a,b,c. Изобразите на рисунке векторы: а) а — b; б) а —с; в) b — а; г) с —b; д) с — а.
  • 331. Пусть ABCD — параллелограмм, а О — произвольная точка пространства. Докажите, что: а) ОВ — ОА = ОС — OD; б) OB — OC = DA.
  • 332. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Представьте векторы АВ1 и DK в виде разности двух векторов, начала и концы которых совпадают с отмеченными на рисунке точками.
  • 333. В пространстве даны четыре точки А, В, С и D. Назовите вектор с началом и концом в данных точках, равный сумме векторов: а) (АВ + СА + DC) + (BC + CD); б) (АВ-АС) + DC.
  • 334. Дан прямоугольный параллелепипед KLMNK1L1M1N1. Докажите, что: а) |MK + MM1| = |MK - MM1|; б) |K1L1 - NL1| = |ML +MM1|; в) |NL - M1L| = |K1N - LN|.
  • 335. Упростите выражение: a) AB+MN+BC+CA+PQ+NM; б) FK+MQ+KP+AM+QK+PF; в) KM+DF+AC+FK+CD+CA+MP; г) AB+BA+CD+MN+DC+NM.
  • 336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующих векторов: а) AC, DC, BD; б) DA, DC, СВ; в) DA, CD, ВС.
  • 337. Упростите выражение: a) OP - EP + KD - KA; б) AD + MP + EK - EP - MD; в) AC - BC - PM - AP + BM.
  • 338. Дан параллелепипед ABCDA1B1C1D1. Докажите, что OA + OC1=OC+OA1, где О—произвольная точка пространства.
  • 339. Дан параллелепипед ABCDA1B1C1D1. Укажите вектор х, начало и конец которого являются вершинами параллелепипеда, такой, что: a) DC + D1A1 + CD1 + x + A1C1 = DB; б) DA + x + D1B + AD1 + BA = DC.
  • 340. Дана треугольная призма АВСА1В1С1. Укажите вектор х, начало и конец которого являются вершинами призмы, такой, что: а) АА1 - В1С - х = ВА; б) AC1 - ВВ1 +х=АВ; в) AB1 + x = AC - x + BC1.
  • 341. Основанием четырехугольной пирамиды с вершиной Р является трапеция ABCD. Точка О — середина средней линии трапеции. Докажите, что PA + PB + PC + PD = 4 PO.
  • 342. Точка Р — вершина правильной шестиугольной пирамиды. Докажите, что сумма всех векторов с началом в точке Р, образованных боковыми ребрами пирамиды, равна сумме всех векторов с началом в точке Р, образованных апофемами.
  • 343. Известно, что AO = ½AB. Докажите, что точки А и В симметричны относительно точки О.
  • 344. Диагонали куба ABCDA1B1C1D1 пересекаются в точке О. Найдите число k такое, что: a) AB = k⋅CD; б) AC1=k⋅AO; в) OB1=k⋅B1D.
  • 345. Точки Е и F — середины оснований АВ и ВС параллелограмма ABCD, а О — произвольная точка пространства. Выразите: а) вектор ОА — ОС через вектор EF; б) вектор ОА — ОЕ через вектор DC.
  • 346. Точки М и N — середины оснований АВ и CD трапеции ABCD, а О — произвольная точка пространства. Выразите вектор ОМ —ON через векторы АР и ВС.
  • 347. Упростите выражение: а) 2(m+n)-3(4m-n)+m;б) m-3(n-2m+p)+5(p-4m).
  • 348. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC1+B1D=2BC.
  • 349. Три точки А, В и М удовлетворяют условию АМ = λ⋅MB, где λ≠— 1. Докажите, что эти точки лежат на одной прямой и для любой точки О пространства выполняется равенство.
  • 350. Известно, что p = a + b + c, причем векторы a, b и c попарно не сонаправлены. Докажите, что |p| < |а| + |b| + |с|.
  • 351. Векторы a и c, а также b и c коллинеарны. Докажите, что коллинеарны векторы: а) a + b и с; б) a - b и c; в) a + 3b и с; г) -a + 2b и с.
  • 352. Векторы a + b и a - b коллинеарны. Докажите, что векторы а и b коллинеарны.
  • 353. Векторы a + 2b и a - 3b коллинеарны. Докажите, что векторы a и b коллинеарны.
  • 354. Докажите, что если векторы a + b и a - b не коллинеарны, то: а) векторы а и b не коллинеарны; б) векторы a + 2b и 2a - b не коллинеарны.

Глава IV. Векторы в пространстве § 3. Компланарные вектора

  • 355. Дан параллелепипед ABCDA1B1C1D1. Какие из следующих трех векторов компланарны: а) АА1, СС1, ВВ1; б) АВ, AD, АA1; в) В1В, AC, DD1; г) AD, СС1, A1B1?
  • 356. Отрезок EF соединяет середины ребер AC и BD тетраэдра ABCD. Докажите, что 2FE = ВА + DC. Компланарны ли векторы FE, ВА и DC?
  • 357. Даны параллелограммы ABCD и AB1C1D1. Докажите, что векторы ВВ1, СС1 и DD1 компланарны.
  • 358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: а) AB + AD + AA1; б) DA + DC + DD1; в) A1B1 + C1B1 + BB1; г) A1A + A1D1 + AB; д) B1A1 + BB1 + BC.
  • 359. В вершинах А1, В и D куба ABCDA1B1C1D1, ребро которого равно а, помещены точечные заряды q. а) Выразите результирующую напряженность создаваемого ими электрического поля в точках A и C1 через вектор AC1. б) Найдите абсолютную величину результирующей
  • 360. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1. б) Разложите вектор B1D1 по векторам А1А, А1В и А1D1.
  • 361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторы CD и D1O по векторам АА1, АВ и AD.
  • 362. Точка К — середина ребра ВС тетраэдра ABCD. Разложите вектор DK по векторам a = DA, b = АВ и с = АС.
  • 363. Основанием пирамиды с вершиной О является параллелограмм ABCD, диагонали которого пересекаются в точке M. Разложите векторы OD и ОМ по векторам a = OA, b = OB и c = OC.
  • 364. Точка К—середина ребра В1С1 куба ABCDA1B1C1D1. Разложите вектор АК по векторам а = АВ, b = AD, с = АА, и найдите длину этого вектора, если ребро куба равно m.
  • 365. Вне плоскости параллелограмма ABCD взята точка О. Точка M — середина АВ, а точка К — середина MD. Разложите векторы ОМ и ОК по векторам а = ОА, b = ОВ, с = ОС.
  • 366. Докажите, что если М — точка пересечения медиан треугольника ABC, а О — произвольная точка пространства, то
  • 367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по векторам DA, DB, DC.
  • 368. Точки М и N являются серединами ребер АВ и A1D1 параллелепипеда ABCDA1B1C1D1. Разложите, если это возможно, по векторам АВ и AD вектор: а) AC; б) СМ; в) C1N; г) AC1; д) A1N; е) AN; ж) MD.
  • 369. Медианы грани ABC тетраэдра ОABC пересекаются в точке М. Разложите вектор ОА по векторам ОВ, ОС, ОМ.
  • 370. Высоты AM и DN правильного тетраэдра ABCD пересекаются в точке К. Разложите по векторам a = DA, b=DB, c = DC вектор: a) DN; б) DK; в) AМ; г) МК.
  • 371. В тетраэдре ABCD медианы грани BCD пересекаются в точке О. Докажите, что длина отрезка АО меньше одной трети суммы длин ребер с общей вершиной A.
  • 372. Докажите, что диагональ АС1 параллелепипеда ABCDA1B1C1D1 проходит через точки пересечения медиан треугольников A1BD и CB1D1 и делится этими точками на три равных отрезка (рис. 111).
  • 373. Точки А1, В1, С1 и М1 —основания перпендикуляров, про веденных к плоскости α из вершин треугольника ABC и из точки М пересечения медиан этого треугольника (рис. 112). Останется ли верным равенство, если какие-то стороны треугольника ABC пересек
  • 374. Отрезки АВ и CD не лежат в одной плоскости, точки М и N — середины этих отрезков. Докажите, что
  • 375. В тетраэдре ABCD точки К и М — середины ребер АВ и CD Докажите, что середины отрезков КС, KD, МА и MB являют ся вершинами некоторого параллелограмма.
  • Вопросы к главе IV

Глава IV. Векторы в пространстве Дополнительные задачи

  • 376. Лан параллелепипед MNРQМ1N1P1Q1. Докажите, что:
  • 377. На рисунке 113 изображен правильный октаэдр. Докажите, что:
  • 378. Докажите, что разность векторов а и b выражается формулой a - b = a + (-b)
  • 379. Дан тетраэдр ABCD. Найдите сумму векторов: а) АВ + BD + DC; б) AD + CB + DC; в) AB+CD+BC+DA.
  • 380. Дан параллелепипед ABCDA1B1C1D1. Найдите сумму векторов: а) АВ+В1С1 + DD1 + CD; б) B1C1+AB+ DD1+CB1 +BC +A1A; в) BA + AC+CB + DC + DA.
  • 381. Даны треугольники ABC, А1В1С1 и две точки О и Р пространства. Известно, что OA+OP=OA1, OB+OP=OB1,OC+OP=OC1. Докажите, что стороны треугольника А1В1С1 соответственно равны и параллельны сторонам треугольника ABC.
  • 382. При каких значениях k в равенстве a = kb, где b ≠0, векторы а и b: а) коллинеарны; б) сонаправлены; в) противоположно направлены; г) являются противоположными?
  • 383. Числа k и l не равны друг другу. Докажите, что если векторы a+kb и a+lb не коллинеарны, то: а) векторы а и b не коллинеарны; б) векторы a+k1b и а+lb не коллинеарны при любых неравных числах k1 и l1.
  • 384. Точки А1, В1 и С1 — середины сторон ВС, АС и АВ треугольника ABC, точка О — произвольная точка пространства. Докажите, что
  • 385. Отрезки, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в точке М. Точка О — произвольная точка пространства. Докажите, что
  • 386. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что для любой точки М пространства справедливо неравенство
  • 387. Три точки М, N и Р лежат на одной прямой, а точка О не лежит на этой прямой. Выразите вектор ОР через векторы ОМ и ON, если: a) NP = 2MN; б) МР-½PN; в) МР = k⋅MN, где k—данное число.
  • 388. Докажите, что векторы р, а и b компланарны, если: а) один из данных векторов нулевой; б) два из данных векторов коллинеарны.
  • 389. На двух скрещивающихся прямых отмечены по три точки: A1, A2, A3 и B1, B2, B3, причем A1A2=k⋅A1A3, В1В2= k⋅В1В3. Докажите, что прямые А1В1, А2В2, A3B3 параллельны некоторой плоскости.
  • 390. Дан прямоугольный параллелепипед ABCDA1B1C1D1, в котором AB = AD = a, AA1 = 2а. В вершинах B1 и D1 помещены заряды q, а в вершине A — заряд 2q. Найдите абсолютную величину результирующей напряженности электрического поля: а) в точке A1; б) в точке С;
  • 391. В тетраэдре ABCD точка К — середина медианы ВВ1 грани BCD. Разложите вектор АК по векторам а = АВ, b = АС, с=AD.
  • 392. На трех некомпланарных векторах р = АВ, q = AD, г=АА1 построен параллелепипед ABCDA1B1C1D1. Разложите по векторам р, q и г векторы, образованные диагоналями этого параллелепипеда.
  • 393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по векторам АВ1, ВС1, CD1.
  • 394. В параллелепипеде ABCDA1B1C1D1 диагонали грани DCC1D1 пересекаются в точке М. Разложите вектор AM по векторам АВ, AD и АА1.
  • 395. Докажите, что если точки пересечения медиан треугольников ABC и А1В1С1 совпадают, то прямые АА1, ВВ1 и СС1 параллельны некоторой плоскости.
  • 396. В тетраэдре ABCD точка М — середина ребра ВС. Выразите через векторы b = АВ, с = АС и d = AD следующие векторы: ВС, CD, DB и DM.
  • 397. В тетраэдре ABCD точки М и N являются соответственно точками пересечения медиан граней ADB и BDC. Докажите, что MN||AC, и найдите отношение длин этих отрезков.
  • 398. Треугольники ABC, A1B1C1 и A2B2C2 расположены так, что точки А, В, С являются серединами отрезков А1А2, В1В2, С1С2 соответственно. Докажите, что точки пересечения медиан треугольников ABC, А1В1С1 и A2B2C2 лежат на одной прямой.
  • 399. Докажите, что треугольник, вершинами которого являются точки пересечения медиан боковых граней тетраэдра, подобен основанию тетраэдра.

Глава V. Метод координат в пространстве. § 1. Координаты точки и координаты вектора.

  • 400. Даны точки A (3; — 1; 0), В (0; 0; — 7), С (2; 0; 0), D ( — 4; 0; 3), E (0; — 1; 0), F(1;2;3), G (0; 5; -7), Н (-√5; √3; 0). Какие из этих точек лежат на: а) оси абсцисс; б) оси ординат; в) оси аппликат; г) плоскости Оху, д) плоскости Oyz
  • 401. Найдите координаты проекций точек А(2; —3; 5), В (3; —5; ½) и C( — √3; —√2/2; √5-√3) на: а) координатные плоскости Oxz, Оху и Oyz; б) оси координат Ох, Оу и Oz.
  • 402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0) и А1 (1; 0; 0). Найдите координаты остальных вершин куба.
  • 403. Запишите координаты векторов: a = 3i+2j—5k, b=—5i + 3k — k, c=i — j, d = j+k, m = k—i, n = 0,7k.
  • 404. Даны векторы а {5; —1; 2}, b{-3; -1; 0}, c{0; -1; 0}, d (0; 0; 0). Запишите разложения этих векторов по координатным векторам i, j, k.
  • 405. На рисунке 124 изображен прямоугольный параллелепипед, у которого ОА= 4, ОВ = 6, ОО1=5. Найдите координаты векторов ОА1, ОВ1, OO1, ОС, ОС1, ВС1, АС1, O1С в системе координат Oxyz.
  • 406. Докажите, что каждая координата суммы (разности) двух векторов равна сумме (разности) соответствующих координат этих векторов.
  • 407. Даны векторы а {3; —5; 2}, b{0; 7; —1}, с {&frac23;; 0; 0;} и d{ — 2,7; 3,1; 0,5}. Найдите координаты векторов: а) а+b; б) а + с; в) b+с; г) d+b; д) d + a; е) а+b+с; ж) b + а + d; з) а+b+c+d.
  • 408. По данным рисунка 125 найдите координаты векторов АС, СВ, АВ, MN, NP, ВМ, ОМ, ОР, если ОА= 3, ОВ=7, ОС = 2, а М, N и Р — середины ребер АС, ОС и СВ.
  • 409. Даны векторы а{5; —1; 1}, b { — 2; 1; 0}, с {0; 0,2; 0} и d {-&frac13;;2&frac25;; -1/7}. Найдите координаты векторов: а) а — b; б) b — а; в) а — с; г) d — а; д) с — d; е) а — b+с; ж) а — b — с; з) 2а; и) —3b; к) —6с; л) —&frac13;d; м) 0,2b.
  • 410. Даны векторы a {— 1; 2; 0}, b{0; —5; —2} и с {2; 1; —3}. Найдите координаты векторов p=3b-2a+c и q=3c-2b+a.
  • 411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координаты векторов: а) За + 2b —с; б) —а + 2с —d; в) 0,1а+ 3b +0,7с— 5d; г) (2а + 3b) — (а — 2b) + 2 (а-b).
  • 412. Найдите координаты векторов, противоположных следующим векторам: i, j, k, а {2; 0; 0}, b { — 3; 5; —7), с { — 0,3; 0; 1,75}.
  • 413. Коллинеарны ли векторы: а) а{3; 6; 8} и b{6; 12; 16); б) с{1; — 1; 3} и d {2; 3; 15}; в) i{1; 0; 0} и j{0; 1; 0}; г) m {0; 0; 0} и n {5; 7; -3}; д) p {&frac13; -1; 5} и q {-1; -3; -15}?
  • 414. Найдите значения m и n, при которых следующие векторы коллинеарны: а) а {15; m; 1} и b(18; 12; n); б) с {m; 0,4; —1} и d{-½;n;5}.
  • 415. Компланарны ли векторы: а) а {— 3; —3; 0}, i и j; б) b{2; 0; — 3}, i и j; в) с{1; 0; — 2}, i и k; г) d {1; — 1; 2}, е{ — 2; 0; 1} и f{5; —1; 0}; д) m {1; 0; 2}, n{1; 1; —1} и р {— 1; 2; 4}; е) q{0; 5; 3}, F {3; 3; 3} и s {1; 1; 4}?
  • 416. Даны векторы ОА{3; 2; 1}, OB {1; -3; 5} и OC{ -&frac13;0,75; -2¾}. Запишите координаты точек А, В и С, если точка О — начало координат.
  • 417. Даны точки А (2; —3; 0), В (7; — 12; 18) и С ( — 8; 0; 5). Запишите координаты векторов ОА, ОВ и ОС, если точка О — начало координат.
  • 418. Найдите координаты вектора АВ, если: а) A (3; —1; 2), В(2; — 1; 4); б) A (-2; 6; -2), В(3; - 1; 0); в) A (1; &frac56;; ½), B(½&frac13;¼).
  • 419. Вершины треугольника ABC имеют координаты: A (1; 6; 2), В (2; 3; — 1), С ( — 3; 4; 5). Разложите векторы АВ, ВС и СА по координатным векторам i, j и k.
  • 420. Даны точки A (3; -1; 5), В (2; 3; -4), С(7; 0; -1) и D (8; —4; 8). Докажите, что векторы АВ и DC равны. Равны ли векторы ВС и AD?
  • 421. Лежат ли точки A, В и С на одной прямой, если: а) А (3; -7; 8), В (-5; 4; 1), С (27; -40; 29); б) A (-5; 7; 12), В (4; -8; 3), С (13; -23; -6); в) A (-4; 8; -2), В ( - 3; -1; 7), С (-2; -10; -16)?
  • 422. Лежат ли точки A, В, С и D в одной плоскости, если: а) А (-2; -13; 3), В(1; 4; 1), С (- 1; - 1; -4), D (0; 0; 0); б) А (0; 1; 0), В (3; 4; -1), С (-2; -3; 0), D (2; 0; 3); в) A (5; -1; 0), В (-2; 7; 1), С (12; -15; -7), D(1; 1; -2)?
  • 423. Докажите, что точка пересечения медиан треугольника ABC с вершинами A (x1; y1; z1), В (x2; y2; z2), С (x3; y3; z3) имеет координаты
  • 424. Точка М — середина отрезка АВ. Найдите координаты: а) точки М, если А (0; 3; —4), В ( — 2; 2; 0); б) точки В, если A (14; —8; 5), М (3; —2; —7); в) точки A, если B(0; 0; 2), М (— 12; 4; 15).
  • 425. Середина отрезка АВ лежит на оси Ох. Найдите m и n, если: а) A ( — 3; m; 5), В (2; —2; n); б) А (1; 0,5; —4), В (1; m; 2n); в) A (0; m; n+1), В(1; n;-m+1); г) A (7; 2m+n; —n), В ( - 5; -3; m -3).
  • 426. Найдите длину вектора АВ, если: а) A (— 1; 0; 2), В (1; — 2; 3); б) A (-35; -17; 20), В (-34; -5; 8).
  • 427. Найдите длины векторов: а {5; —1; 7}, b {2 √3; —6; 1}, c = i+j+k, d=—2k, m = i — 2j.
  • 428. Даны векторы а {3; —2; 1), b { — 2; 3; 1} и с { —3; 2; 1}. Найдите: а) |а + b|; б) |а| + |b|; в) |а| — |b|; г) |а — b|; д) |3с|; е) √14|c|; ж) |2а —Зс|.
  • 429. Даны точки М ( — 4; 7; 0) и N (0; — 1; 2). Найдите расстояние от начала координат до середины отрезка MN.
  • 430. Даны точки A (3/2; 1; — 2 ), В (2; 2; —3) и С (2; 0; — 1). Найдите: а) периметр треугольника АВС; б) медианы треугольника ABC.
  • 431. Определите вид треугольника ABC, если: а) A (9; 3; —5), В (2; 10; -5), С (2; 3; 2); б) A (3; 7; -4), В (5; -3; 2), С (1; 3; — 10); в) A (5; -5; -1),В(5; -3; -1), С (4; -3;0); г) A (-5; 2; 0), В ( — 4; 3; 0), С (-5; 2; -2).
  • 432. Найдите расстояние от точки A ( — 3; 4; —4) до: а) координатных плоскостей; б) осей координат.
  • 433. На каждой из координатных плоскостей найдите такую точку, расстояние от которой до точки A ( — 1; 2; —3) является наименьшим среди всех расстояний от точек этой координатной плоскости до точки A.
  • 434. На каждой из осей координат найдите такую точку, расстояние от которой до точки В (3; —4; √7) является наименьшим среди всех расстояний от точек этой оси до точки В.
  • 435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является равнобедренным?
  • 436. Даны точки A (4; 4; 0), В (0; 0; 0), С (0; 3; 4) и D (1; 4; 4). Докажите, что ABCD — равнобедренная трапеция.
  • 437. Найдите точку, равноудаленную от точек А (— 2; 3; 5) и В(3; 2; —3) и расположенную на оси: а) Ох; б) Оу; в) Oz.
  • 438. Даны точки А (— 1; 2; 3), В ( — 2; 1; 2) и С (0; — 1; 1). Найдите точку, равноудаленную от этих точек и расположенную на координатной плоскости: а) Оху; б) Oyz; в) Ozx.
  • 439. Даны точки О (0; 0; 0), А (4; 0; 0), В (0; 6; 0), С (0; 0; —2). Найдите: а) координаты центра и радиус окружности, описанной около треугольника АОВ; б) координаты точки, равноудаленной от вершин тетраэдра OABC.
  • 440. Отрезок CD длины т перпендикулярен к плоскости прямоугольного треугольника ABC с катетами АС = b и ВС = a. Введите подходящую систему координат и с помощью формулы расстояния между двумя точками найдите расстояние от точки D до середины гипотенузы эт

Глава V. Метод координат в пространстве. § 2. Скалярное произведение векторов

  • 441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.
  • 442. Угол между векторами АВ и CD равен φ. Найдите углы BA^DC, BA^CD, АВ^DC.
  • 443. Ребро куба ABCDA1B1C1D1 равно а, точка O1 — центр грани A1B1C1D1. Вычислите скалярное произведение векторов: а) AD и В1С1; б) АС и С1А1; в) D1B и АС; г) ВА1 и ВС1; д) A1O1 и А1С1; е) D1O1 и В1O1; ж) ВО1 и С1В.
  • 444. Даны векторы а {1; —1; 2),b{—1; 1; 1} и с {5; 6; 2}. Вычислите ас, ab, bc, aa, √bb.
  • 445. Даны векторы а = 3i — 5j + k и b=j — 5k. Вычислите: a) аb; б) ai; в) bj; г) (a + b)k; д) (а — 2b) (k + i— 2j).
  • 446. Даны векторы а {3; —1; 1}, b{—5; 1;0} и c{— 1; —2; 1}. Выясните, какой угол (острый, прямой или тупой) между векторами: а) а и b; б) b и c; в) a и c.
  • 447. Дан вектор а {3: —5; 0}. Докажите, что: a) a^i<90°; б) а^j>90°; в) a^k = 90°.
  • 448. Даны векторы а {— 1; 2; 3} и b {5, х; — 1} При каком значении х выполняется условие: a) ab = 3; б) cb= — 1; в) a⊥b?
  • 449. Даны векторы a=mi+3j+4k и b=4i+mj-7k. При каком значении m векторы а и b перпендикулярны?
  • 450. Даны точки А (0; 1; 2), В (√2; 1; 2), С (√2; 2; 1) и D (0; 2; 1). Докажите, что ABCD — квадрат.
  • 451. Вычислите угол между векторами: а) а{2; —2; 0} и b {3; 0; -3}; 6) а {√2; √2; 2} и b {-3; -3; 0}; в) a{0; 5; 0} и b{0; — √З; 1); г) а {—2,5; 2,5; 0} и b (-5; 5; 5 √2}; д) а{ — √2; — √2; —2} и b{√2/2 ;√2/
  • 452. Вычислите углы между вектором а {2; 1; 2} и координатными векторами.
  • 453. Даны точки А (1; 3; 0), В (2; 3; — 1) и С (1; 2; — 1). Вычислите угол между векторами СА и СВ.
  • 454. Найдите углы, периметр и площадь треугольника, вершинами которого являются точки A(1; -1; 3;), В (3; -1; 1) и С(- 1; 1; 3).
  • 455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и DB1; в) DB и АС1.
  • 456. Дан прямоугольный параллелепипед ABCDA1B1C1D1, в котором АВ = 1, ВС = СС1 = 2. Вычислите угол между векторами DB1 и BC1.
  • 457. Известно, что а^с = b^с = 60°, |а| = 1, |b| = |с| = 2. Вычислите (а + b) с.
  • 458. Докажите справедливость равенства (a + b + с) d = ad + bd + cd.
  • 459. Векторы а и b перпендикулярны к вектору с, ab= 120°, |а| = |b| = |с| = 1. Вычислите: а) скалярные произведения (а+b+с) (2b) и (а — b+с)(а — с); б) |а — b| и |a+b-c|.
  • 460. Докажите, что координаты ненулевого вектора в прямоугольной системе координат равны {|a|cosφ1; |a|cosφ2; |a|cosφ3}, где φ1=a^i, φ2=a^j, φ3=a^k.
  • 461. Все ребра тетраэдра ABCD равны друг другу. Точки М и N — середины ребер AD и ВС. Докажите, что MN AD = MN ВС = 0.
  • 462. В параллелепипеде ABCDA1B1C1D1 AA1=AB = AD=1, ∠DAB = 60°, ∠A1AD=∠A1AB = 90°. Вычислите: a) BA⋅D1C1; б) BC1⋅D1B; в) AC1⋅AC1; г) |DB1|; д) |A1C|; e) cos (DA1^D1B); ж) cos (AC1^DB1).
  • 463. В тетраэдре ABCD противоположные ребра AD и ВС, а также BD и АС перпендикулярны. Докажите, что противоположные ребра CD и АВ также перпендикулярны.
  • 464. Вычислите угол между прямыми А В и CD, если: а) А (3; -2; 4), В (4; -1; 2), С (6; -3; 2), D (7; -3; 1); б) A (5; -8; -1), В (6; -8; -2), С (7; -5; -11), D (7; -7; -9); в) A(1; 0; 2), В (2; 1; 0), С (0; -2; -4), D ( - 2; -4; 0); г) А (-6; -15; 7), В (
  • 465. Дана правильная треугольная призма АВСA1B1C1, в которой АА1=√2АВ (рис. 132,а). Найдите угол между прямыми АС1 и А1В.
  • 466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС. Вычислите косинус угла между прямыми: a) MN и DD1; б) MN и BD; в) MN и B1D; г) MN и А1С.
  • 467. В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = ВС=½АА1. Найдите угол между прямыми: a) BD и CD1; б) АС и АС1
  • 468. В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = 1, ВС=2, BB1=3. Вычислите косинус угла между прямыми: а) АС и D1B; б) AB1 и ВС1; в) A1D и АС1.
  • 469. В кубе ABCDA1B1C1D1 диагонали грани ABCD пересекаются в точке N, а точка М лежит на ребре A1D1, причем A1M:MD1 = 1:4. Вычислите синус угла между прямой MN и плоскостью грани: a) ABCD; б) DD1C1C; в) AA1D1D.
  • 470. В тетраэдре ABCD ∠ABD= ∠ABC= ∠DBC = 90°, АВ = BD = 2, ВС= 1. Вычислите синус угла между прямой, проходящей через середины ребер AD и ВС, и плоскостью грани: a) ABD; б) DBC; в) ABC.
  • 471. Докажите, что угол между скрещивающимися прямыми, одна из которых содержит диагональ куба, а другая — диагональ грани куба, равен 90°.
  • 472. Дан куб MNPQM1N1P1Q1. Докажите, что прямая РМ1 перпендикулярна к плоскостям MN1Q1 и QNP1.
  • 473. Лучи ОА, ОВ и ОС образуют три прямых угла АОВ, АОС и ВОС. Найдите угол между биссектрисами углов СОА и АОВ.
  • 474. В прямоугольном параллелепипеде ABCDA1B1C1D1 ∠BAC1 = ∠DAC1=60°. Найдите φ= ∠A1AC1.
  • 475. В тетраэдре DABC DA = 5 см, АВ = 4 см, АС = 3 см, ∠BAC = 90°, ∠DAB= 60°, ∠DAC = 45°. Найдите расстояние от вершины А до точки пересечения медиан треугольника DBC.
  • 476. Угол между диагональю АС1 прямоугольного параллелепипеда ABCDA1B1C1D1 и каждым из ребер АВ и AD равен 60°. Найдите ∠САС1.
  • 477. Проекция точки К на плоскость квадрата ABCD совпадает с центром этого квадрата. Докажите, что угол между прямыми АК и BD равен 90°.

Глава V. Метод координат в пространстве. § 3. Движения

  • 478. Найдите координаты точек, в которые переходят точки А(0; 1; 2), В (3; — 1; 4), С(1; 0; —2) при: а) центральной симметрии относительно начала координат; б) осевой симметрии относительно координатных осей; в) зеркальной симметрии относительно координат
  • 479. Докажите, что при центральной симметрии: а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую; б) прямая, проходящая через центр симметрии, отображается на себя.
  • 480. Докажите, что при центральной симметрии: а) плоскость, не проходящая через центр симметрии, отображается на параллельную ей плоскость; б) плоскость, проходящая через центр симметрии, отображается на себя.
  • 481. Докажите, что при осевой симметрии: а) прямая, параллельная оси, отображается на прямую, параллельную оси; б) прямая, образующая с осью угол φ, отображается на прямую, также образующую с осью угол φ.
  • 482. При зеркальной симметрии прямая a отображается на прямую а1. Докажите, что прямые a и a1 лежат в одной плоскости.
  • 483. При зеркальной симметрии относительно плоскости α плоскость β отображается на плоскость β1. Докажите, что если: а) β||α, то β1||α; б) β⊥α, то β1 совпадает с β.
  • 484. Докажите, что при параллельном переносе на вектор р, где р≠0: а) прямая, не параллельная вектору р и не содержащая этот вектор, отображается на параллельную ей прямую; б) прямая, параллельная вектору р или содержащая этот вектор, отображается на с
  • 485. Треугольник A1B1C1 получен параллельным переносом треугольника ABC на вектор р. Точки M1 и М — соответственно точки пересечения медиан треугольников A1B1C1 и ABC. Докажите, что при параллельном переносе на вектор р точка М переходит в точку М1.
  • 486. Докажите, что при движении: а) прямая отображается на прямую; б) плоскость отображается на плоскость.
  • 487. Докажите, что при движении: а) отрезок отображается на отрезок; б) угол отображается на равный ему угол.
  • 488. Докажите, что при движении: а) параллельные прямые отображаются на параллельные прямые; б) параллельные плоскости отображаются на параллельные плоскости.
  • 489. Докажите, что при движении: а) окружность отображается на окружность того же радиуса; б) прямоугольный параллелепипед отображается на прямоугольный параллелепипед с теми же измерениями.

Вопросы к главе V Метод координат в пространстве

  • 1. Как расположена точка относительно прямоугольной системы координат, если: а) одна ее координата равна нулю; б) две ее координаты равны нулю?
  • 2. Объясните, почему все точки, лежащие на прямой, параллельной плоскости Оху, имеют одну и ту же аппликату.
  • 3. Даны точки А (2; 4; 5), В (3; х; у), С (0; 4; z) и D (5; t; u). При каких значениях х, у, z, t и u эти точки лежат: а) в плоскости, параллельной плоскости Оху; б) в плоскости, параллельной плоскости Oxz; в) на прямой, параллельной оси Ох?
  • 4. Какие координаты имеет вектор СА, если АВ {x1; у1; z1}, ВС {х2; у2; z2}?
  • 5. Первая и вторая координаты ненулевого вектора а равны нулю. Как расположен вектор а по отношению к оси: a) Oz; б) Ох; в) Oy?
  • 6. Первая координата ненулевого вектора а равна нулю. Как расположен вектор а по отношению: а) к координатной плоскости Oxz; б) к оси Ох?
  • 7. Коллинеарны ли векторы: а) а{—5; 3; —1} и b{6; —10; —2}; б) а{-2; 3; 7} и 6{-1; 1,5; 3,5)?
  • 8. Длина радиус-вектора точки М равна 1. Может ли абсцисса точки М равняться: а) 1; б) 2?
  • 9. Длина вектора а равна 3. Может ли одна из координат вектора а равняться: а) 3; б) 5?
  • 10. Абсцисса точки М1 равна 3, а абсцисса точки М2 равна 6. а) Может ли длина отрезка М1М2 быть равной 2? б) Как расположен отрезок М1М2 по отношению к оси Ох, если его длина равна 3?
  • 11. Векторы a и b имеют длины a и b. Чему равно скалярное произведение векторов a и b, если: а) векторы a и b сонаправлены; б) векторы a и b противоположно направлены; в) векторы a и b перпендикулярны; г) угол между векторами a и b равен 60°; д) угол ме
  • 12. При каком условии скалярное произведение векторов a и b: а) положительно; б) отрицательно; в) равно нулю?
  • 13. Дан куб ABCDA1B1C1D1. Перпендикулярны ли векторы: a) AD и D1C1; б) BD и СС1; в) А1С1 и AD; г) DB и D1C1; д) ВВ и АС?
  • 14. Первые координаты векторов а и b равны соответственно 1 и 2. Может ли скалярное произведение векторов а и b быть: а) меньше 2; б) равно 2; больше 2?
  • 15. Какие координаты имеет точка А, если при центральной, симметрии с центром А точка В(1; 0; 2) переходит в точку С (2; -1; 4)?
  • 16. Как расположена плоскость по отношению к осям координат Ох и Oz, если при зеркальной симметрии относительно этой плоскости точка М(2; 1; 3) переходит в точку M1 (2; —2; 3)?
  • 17. В какую перчатку (правую или левую) переходит правая перчатка при зеркальной симметрии? осевой симметрии? центральной симметрии?

Дополнительные задачи к главе V Метод координат в пространстве

  • 490. Даны векторы а {—5; 0; 5), b (—5; 5; 0] и с{ 1; —2; —3). Найдите координаты вектора: а) 3b — За + Зс; б) —0,1с + 0,8а —0,5b.
  • 491. Коллинеарны ли векторы: а) а {— 5; 3; — 1} и b (6; —10; —2}; б) а{-2; 3; 7} и b {— 1; 1,5; 3,5); в) a{-&frac23;; 5/9; — 1 } и b {6; -5; 9}; г) а {0,7; -1,2; -5,2} и b {-2,8; 4,8; -20,8}?
  • 492. Даны точки А ( — 5; 7; 3) и В (3; —11; 1). а) На оси Ох найдите точку, ближайшую к середине отрезка АВ. б) Найдите точки, обладающие аналогичным свойством, на осях Оу и Oz.
  • 493. Компланарны ли векторы: а) а{—1; 2; 3}, i + j и i — k; б) b{2; 1; 1,5}, i + j + k и i —j; в) а{1; 1; 1}, b(1; —1; 2} и с (2; 3; -1}?
  • 494. Даны точки А (3; 5; 4), В (4; 6; 5), С (6; —2; 1) и D (5; —3; 0). Докажите, что ABCD — параллелограмм.
  • 495. Даны точки А (2; 0; 1), В (3; 2; 2) и С (2; 3; 6). Найдите координаты точки пересечения медиан треугольника ABC.
  • 496. Даны координаты четырех вершин параллелепипеда ABCDA1B1C1D1: А (3; 0; 2), В (2; 4; 5), А1 (5; 3; 1), D (7; 1; 2). Найдите координаты остальных вершин.
  • 497. Середина отрезка АВ лежит в плоскости Оху. Найдите k, если: а) А (2; 3; - 1), В (5; 7; k); б) А (0; 4; k), В (3; -8; 2); в) А (5; 3; k), В (3; -5; 3k).
  • 498. Найдите координаты единичных векторов, сонаправленных соответственно с векторами а {2; 1; —2} и b{1; 3; 0}.
  • 499. Длина вектора а {х; у; z) равна 5. Найдите ординату вектора а, если х = 2, z=—√5.
  • 500. Даны точки М (2; —1; 3), N ( — 4; 1; —1), Р ( — 3; 1; 2) и Q (1; 1; 0). Вычислите расстояние между серединами отрезков MN и PQ.
  • 501. Найдите расстояние от точки В (— 2; 5; √3) до осей координат.
  • 502. На оси ординат найдите точку, равноудаленную от точек A (13; 2; -1) и В (-15; 7; -18).
  • 503. Найдите координаты центра окружности, описанной около треугольника с вершинами А (0; 2; 2), В (2; 1; 1), С (2; 2; 2).
  • 504. Вершины треугольника ABC расположены по одну сторону от плоскости α и находятся от этой плоскости на расстояниях 4 дм, 5 дм и 9 дм. Найдите расстояние от точки пересечения медиан треугольника до плоскости α.
  • 505. Медианой тетраэдра называется отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани. Докажите, что медианы тетраэдра пересекаются в одной точке, которая делит каждую медиану в отношении 3:1, считая от вершины.
  • 506. Даны векторы а {— 1; 5; 3}, b {3; 0; 2}, с{½ -3; 4} и d {2; 1; 0}. Вычислите скалярное произведение: a) ab; б) ас; в) dd; г) (a+ b + c)d; д) (a — b)(c — d).
  • 507. В тетраэдре DABC DA = DB = DC, ∠ADB = 45°, ∠BDC = 60°. Вычислите угол между векторами: а) DA и BD; б) DB и СВ; в) BD и ВА.
  • 508. Все ребра тетраэдра ABCD равны друг другу, D1 — проекция точки D на плоскость ABC. Перпендикулярны ли векторы: а) D1B и D1D; б) DD1 и ВС; в) DA и ВС; г) D1B и DC?
  • 509. Вычислите косинус угла между прямыми АВ и CD, если: а) A (7; -8; 15), В (8; -7; 13), С(2; -3; 5), D(-1; 0; 4); б) A (8; -2; 3), В( 3; -1; 4), С (5; -2; 0), D (7; 0; -2).
  • 510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D и АМ; б) MD и ВВ1.
  • 511. В параллелепипеде ABCDA1B1C1D1 ∠BAA1 = ∠BAD =∠DAA1 =60°, АВ =AA1 =AD = 1. Вычислите длины векторов AC1 и BD1.
  • 512. Проекция точки М на плоскость ромба ABCD совпадает с точкой О пересечения его диагоналей. Точка N — середина стороны ВС, АС = 8, DB = МО = 6. Вычислите косинус угла между прямой MN и прямой: а) ВС; б) DC; в) АС; г) DB.
  • 513. В кубе A1B1C1D1 точка М лежит на ребре ВВ1, причем ВМ:МВ1=3:2, а точка N лежит на ребре AD, причем AN:ND = 2:3. Вычислите синус угла между прямой MN и плоскостью грани: а) DD1C1C; б) A1B1C1D1.
  • 514. Лучи ОА, ОВ, ОС и ОМ расположены так, что ∠AOB = ∠ВОС = ∠СОА = 90°, ∠АОМ = φ1, ∠ВОМ = φ2, ∠COM = φ3. Докажите, что
  • 515. Лучи ОА, ОВ и ОС расположены так, что ∠BOC = ∠BOA = 45°, ∠AOC = 60°. Прямая ОН перпендикулярна к плоскости АОВ. Найдите угол между прямыми ОН и ОС.
  • 516. Дан двугранный угол CABD, равный φ (φ<90°). Известно, что АС⊥АВ и ∠DAB = Q. Найдите cos∠CAD.
  • 517. Отрезки СА и DB перпендикулярны к ребру двугранного угла CABD, равного 120°. Известно, что АВ=m, СА = n, BD = p. Найдите CD.
  • 518. При движении прямая а отображается на прямую а1, а плоскость α — на плоскость α1. Докажите, что: а) если a||α, то a1||α1; б) если a⊥α, то a1⊥α1.
  • 519. При зеркальной симметрии относительно плоскости α плоскость β отображается на плоскость β1. Докажите, что если плоскость β образует с плоскостью α угол φ, то и плоскость β1 образует с плоскостью α угол φ.
  • 520. Докажите, что при параллельном переносе на вектор р: а) плоскость, не параллельная вектору p и не содержащая этот вектор, отображается на параллельную ей плоскость; б) плоскость, параллельная вектору p или содержащая этот вектор, отображается на себя

Глава VI. Цилиндр, конус и шар § 1. цилиндр

  • 521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположные стороны которого — образующие, а две другие — диаметры оснований цилиндра. Найдите диагональ осевого сечения, если радиус цилиндра равен 1,5 м, а высота —4 м.
  • 522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей цилиндра равен 60°. Найдите: а) высоту цилиндра; б) радиус цилиндра; в) площадь основания цилиндра.
  • 523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высоту цилиндра; б) площадь основания цилиндра.
  • 524. Осевые сечения двух цилиндров равны. Равны ли высоты этих цилиндров?
  • 525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2. Найдите высоту цилиндра.
  • 526. Площадь основания цилиндра относится к площади осевого сечения как √3π:4. Найдите: а) угол между диагональю осевого сечения цилиндра и плоскостью основания; б) угол между диагоналями осевого сечения.
  • 527. Концы отрезка АВ лежат на окружностях оснований цилиндра. Радиус цилиндра равен г, его высота — h, а расстояние между прямой АВ и осью цилиндра равно d. Найдите: a) h, если r =10 дм, d = 8 дм, АВ = 13 дм; б) d, если h = 6 см, г = 5 см, АВ=10 см.
  • 528. Докажите, что если секущая плоскость параллельна оси цилиндра и расстояние между этой плоскостью и осью цилиндра меньше его радиуса, то сечение цилиндра представляет собой прямоугольник, две противоположные стороны которого — образующие цилиндра.
  • 529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра плоскостью, параллельной его оси, если расстояние между этой плоскостью и осью цилиндра равно 3 см.
  • 530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересечен плоскостью, параллельной его оси, так, что в сечении получился квадрат. Найдите расстояние от оси цилиндра до секущей плоскости.
  • 531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной оси цилиндра и удаленной на 9 дм от нее, равна 240 дм2. Найдите радиус цилиндра.
  • 532. Через образующую АА1 цилиндра проведены две секущие плоскости, одна из которых проходит через ось цилиндра. Найдите отношение площадей сечений цилиндра этими плоскостями, если угол между ними равен tp.
  • 533. Высота цилиндра равна h, а площадь осевого сечения равна 5. Найдите площадь сечения цилиндра плоскостью, параллельной его оси, если расстояние между осью цилиндра и плоскостью сечения равно d.
  • 534. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 120°. Найдите площадь сечения, если высота цилиндра равна h, а расстояние между осью цилиндра и секущей плоскостью равно d.
  • 535. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60°. Образующая цилиндра равна 10√З см, расстояние от оси до секущей плоскости равно 2 см. Найдите площадь сечения.
  • 536. Через образующую цилиндра проведены две взаимно перпендикулярные плоскости. Площадь каждого из полученных сечений равна 5. Найдите площадь осевого сечения цилиндра.
  • 537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине окружности основания. Найдите площадь боковой поверхности цилиндра.
  • 538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевого сечения цилиндра.
  • 539. Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?
  • 540. Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см2. Найдите радиус основания и высоту цилиндра.
  • 541. Сколько квадратных метров листовой жести пойдет на изготовление трубы длиной 4 м и диаметром 20 см, если на швы необходимо добавить 2,5% площади ее боковой поверхности?
  • 542. Угол между образующей цилиндра и диагональю осевого сечения равен φ, площадь основания цилиндра равна S. Найдите площадь боковой поверхности цилиндра.
  • 543. Угол между диагоналями развертки боковой поверхности цилиндра равен φ, диагональ равна d. Найдите площади боковой и полной поверхностей цилиндра.
  • 544. Из квадрата, диагональ которого равна d, свернута боковая поверхность цилиндра. Найдите площадь основания цилиндра.
  • 545. Цилиндр получен вращением квадрата со стороной а вокруг одной из его сторон. Найдите площадь: а) осевого сечения цилиндра; б) боковой поверхности цилиндра; в) полной поверхности цилиндра.
  • 546. Один цилиндр получен вращением в пространстве прямоугольника ABCD вокруг прямой АВ, а другой цилиндр — вращением того же прямоугольника вокруг прямой ВС. а) Докажите, что площади боковых поверхностей этих цилиндров равны, б) Найдите отношение площаде

Глава VI. Цилиндр, конус и шар § 2. Конус

  • 547. Высота конуса равна 15 см, а радиус основания равен 8 см. Найдите образующую конуса.
  • 548. Образующая конуса, равная 12 см, наклонена к плоскости основания под углом α. Найдите площадь основания конуса, если: а) α = 30°; б) α = 45°; в) α = 60°.
  • 549. Высота конуса равна 8 дм. На каком расстоянии от вершины конуса надо провести плоскость, параллельную основанию, чтобы площадь сечения была равна: а) половине площади основания; б) четверти площади основания?
  • 550. Осевое сечение конуса — прямоугольный треугольник. Найдите площадь этого сечения, если радиус основания конуса равен 5 см.
  • 551. Осевое сечение конуса — правильный треугольник со стороной 2г. Найдите площадь сечения, проведенного через две образующие конуса, угол между которыми равен: а) 30°; б) 45°; в) 60°.
  • 552. Высота конуса равна h, а угол между высотой и образующей конуса равен 60°. Найдите площадь сечения конуса плоскостью, проходящей через две взаимно перпендикулярные образующие.
  • 553. Найдите высоту конуса, если площадь его осевого сечения равна 6 дм2, а площадь основания равна 8 дм2.
  • 554. Образующая конуса равна l, а радиус основания равен r. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу: а) в 60°; б) в 90°.
  • 555. Высота конуса равна 10 см. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу в 60°, если плоскость сечения образует с плоскостью основания конуса угол: а) 30°; б) 45°; в) 60°.
  • 556. Основанием конуса с вершиной Р является круг радиуса r с центром О. Докажите, что если секущая плоскость α перпендикулярна к оси конуса, то сечение конуса представляет собой круг с центром O1 радиуса r1, где О1 — точка пересечения плоскости &al
  • 557. Две секущие плоскости перпендикулярны к оси конуса. Докажите, что площади сечений конуса этими плоскостями относятся как квадраты расстояний от вершины конуса до этих плоскостей.
  • 558. Разверткой боковой поверхности конуса является сектор с дугой α. Найдите α, если высота конуса равна 4 см, а радиус основания равен 3 см.
  • 559. Найдите дугу сектора, представляющего собой развертку боковой поверхности конуса, если образующая конуса составляет с плоскостью основания угол в 60°.
  • 560. Найдите угол при вершине осевого сечения конуса, если разверткой его боковой поверхности является сектор с дугой, равной: а) 180°; б) 90°; в) 60°.
  • 561. Вычислите площадь основания и высоту конуса, если разверткой его боковой поверхности является сектор, радиус которого равен 9 см, а дуга равна 120°.
  • 562. Угол между образующей и осью конуса равен 45°, образующая равна 6,5 см. Найдите площадь боковой поверхности конуса.
  • 563. Площадь осевого сечения конуса равна 0,6 см2. Высота конуса равна 1,2 см. Вычислите площадь полной поверхности конуса.
  • 564. Образующая конуса наклонена к плоскости основания под углом φ. В основание конуса вписан треугольник, у которого одна сторона равна a, а противолежащий угол равен α. Найдите площадь полной поверхности конуса.
  • 565. Прямоугольный треугольник с катетами 6 см и 8 см вращается вокруг меньшего катета. Вычислите площади боковой и полной поверхностей образованного при этом вращении конуса.
  • 566. Равнобедренный треугольник, боковая сторона которого равна m, а угол при основании равен φ, вращается вокруг основания. Найдите площадь поверхности тела, получаемого при вращении треугольника.
  • 567. Найдите образующую усеченного конуса, если радиусы оснований равны 3 см и 6 см, а высота равна 4 см.
  • 568. Радиусы оснований усеченного конуса равны 5 см и 11 см, а образующая равна 10 см. Найдите: а) высоту усеченного конуса; б) площадь осевого сечения.
  • 569. Радиусы оснований усеченного конуса равны R и r, где а образующая составляет с плоскостью основания угол в 45°. Найдите площадь осевого сечения.
  • 570. Площадь боковой поверхности конуса равна 80 см2. Через середину высоты конуса проведена плоскость, перпендикулярная к высоте. Найдите площадь боковой поверхности образовавшегося при этом усеченного конуса.
  • 571. Дана трапеция ABCD, в которой ∠A=90°, ∠D = 45°, ВС = 4 см, CD = 3√2 см. Вычислите площади боковой и полной поверхностей усеченного конуса, образованного вращением данной трапеции вокруг стороны АВ.
  • 572. Ведро имеет форму усеченного конуса, радиусы оснований которого равны 15 см и 10 см, а образующая равна 30 см. Сколько килограммов краски нужно взять для того, чтобы покрасить с обеих сторон 100 таких ведер, если на 1 м2 требуется 150 г краски? (Толщ

Глава VI. Цилиндр, конус и шар § 3. Сфера

  • 573. Точки А и В лежат на сфере с центром O∉АВ, а точка М лежит на отрезке АВ. Докажите, что: а) если М — середина отрезка АВ, то ОМ⊥АВ; б) если ОМ⊥АВ, то М — середина отрезка АВ.
  • 574. Точка М — середина отрезка АВ, концы которого лежат на сфере радиуса R с центром О. Найдите: а) ОМ, если R = 50 см, AB=40 см; б) ОМ, если R = 15 мм, АВ= 18 мм; в) АВ, если R=10 дм, ОМ =60 см; г) AM, если R=a, ОМ = b.
  • 575. Точки А и В лежат на сфере радиуса R. Найдите расстояние от центра сфера до прямой АВ, если АВ = m.
  • 576. Найдите уравнение сферы радиуса R с центром А, если: а) А (2; -4; 7), R = 3; б) А (0; 0; 0), R = √2; в) А (2; 0; 0), R = 4.
  • 577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0), N (5; 0; — 1); б) А ( — 2; 2; 0), N(0; 0; 0); в) A (0; 0; 0), N (5; 3; 1).
  • 578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2 + (y + 2)2 + z2 = 2.
  • 579. Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координаты центра и радиус этой сферы: а) х2 —4x + y2 + z2 =0; б) x2+y2+z2—2y= 24; в) х2+ 2х + у2+z2 = 3; г) х2 — х — y2 + 3y + z2 —2z = 2,5.
  • 580. Шар радиуса 41 дм пересечен плоскостью, находящейся на расстоянии 9 дм от центра. Найдите площадь сечения.
  • 581. Вершины треугольника ABC лежат на сфере радиуса 13 см. Найдите расстояние от центра сферы до плоскости треугольника, если АВ = 6 см, ВС = 8 см, АС= 10 см.
  • 582. Вершины прямоугольника лежат на сфере радиуса 10 см. Найдите расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16 см.
  • 583. Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если его стороны равны 10 см, 10 см и 12 см.
  • 584. Все стороны треугольника ABC касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если AB= 13 см, BC= 14 см, CA = 15 см.
  • 585. Все стороны ромба, диагонали которого равны 15 см и 20 см, касаются сферы радиуса 10 см. Найдите расстояние от центра сферы до плоскости ромба.
  • 586. Отрезок ОН—высота тетраэдра ОАВС. Выясните взаимное расположение сферы радиуса R с центром О и плоскости ABC, если: a) R = 6 дм, ОН = 60 см; б) R = 3 м, ОН = 95 см; в) R = 5 дм, О А = 45 см; г) R = 3,5 дм, ОН = 40 см.
  • 587. Расстояние от центра шара радиуса R до секущей плоскости равно d. Вычислите: а) площадь S сечения, если R — 12 см, d = 8 см; б) R, если площадь сечения равна 12 см2, d = 2 см.
  • 588. Через точку, делящую радиус сферы пополам, проведена секущая плоскость, перпендикулярная к этому радиусу. Радиус сферы равен R. Найдите: а) радиус получившегося сечения; б) площадь боковой поверхности конуса, вершиной которого является центр сферы, а
  • 589. Секущая плоскость проходит через конец диаметра сферы радиуса R так, что угол между диаметром и плоскостью равен а. Найдите длину окружности, получившейся в сечении, если: a) R = 2 см, α = 30°; б) R = 5 м, α = 45°.
  • 590. Через точку сферы радиуса R, которая является границей данного шара, проведены две плоскости, одна из которых является касательной к сфере, а другая наклонена под углом φ к касательной плоскости. Найдите площадь сечения данного шара.
  • 591. Сфера касается граней двугранного угла в 120°. Найдите радиус сферы и расстояние между точками касания, если расстояние от центра сферы до ребра двугранного угла равно а.
  • 592. Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точки касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.
  • 593. Найдите площадь сферы, радиус которой равен: а) 6 см; б) 2 дм; в) √2 м; г) 2√3 см.
  • 594. Площадь сечения сферы, проходящего через ее центр, равна 9 м2. Найдите площадь сферы.
  • 595. Площадь сферы равна 324 см2. Найдите радиус сферы.
  • 596. Используя формулу площади сферы, докажите, что площади двух сфер пропорциональны квадратам их радиусов.
  • 597. Вычислите радиус круга, площадь которого равна площади сферы радиуса 5 м.
  • 598. Радиусы двух параллельных сечений сферы равны 9 см и 12 см. Расстояние между секущими плоскостями равно 3 см. Найдите площадь сферы.
  • 599. Радиусы сечений сферы двумя взаимно перпендикулярными плоскостями равны r1 и r2. Найдите площадь сферы, если сечения имеют единственную общую точку.
  • 600. Используя формулу площади сферы, докажите, что площадь полной поверхности цилиндра, полученного при вращении квадрата вокруг одной из его сторон, равна площади сферы, радиус которой равен стороне квадрата.

Вопросы к главе VI Цилиндр, конус и шар

Глава VI. Цилиндр, конус и шар. Дополнительные задачи

  • 601. Площадь осевого сечения цилиндра равна S. Найдите площадь сечения цилиндра плоскостью, проходящей через середину радиуса основания перпендикулярно к этому радиусу.
  • 602. Вершины А и В прямоугольника ABCD лежат на окружности одного из оснований цилиндра, а вершины С и D — на окружности другого основания. Вычислите радиус цилиндра, если его образующая равна а, АВ=а, а угол между прямой ВС и плоскостью основания равен 6
  • 603. Докажите, что если плоскость параллельна оси цилиндра и расстояние между этой плоскостью и осью равно радиусу цилиндра, то плоскость содержит образующую цилиндра, и притом только одну. (В этом случае плоскость называется касательной плоскостью к цили
  • 604. При вращении прямоугольника вокруг неравных сторон получаются цилиндры, площади полных поверхностей которых равны S1 и S2. Найдите диагональ прямоугольника.
  • 605. Найдите отношение площади полной поверхности цилиндра к площади боковой поверхности, если осевое сечение цилиндра представляет собой: а) квадрат; б) прямоугольник ABCD, в котором AB:AD = 1:2.
  • 606. Площадь боковой поверхности цилиндра равна площади круга, описанного около его осевого сечения. Найдите отношение радиуса цилиндра к его высоте.
  • 607. Найдите высоту и радиус цилиндра, имеющего наибольшую площадь боковой поверхности, если периметр осевого сечения цилиндра равен 2р.
  • 608. Толщина боковой стенки и дна стакана цилиндрической формы равна 1 см, высота стакана равна 16 см, а внутренний радиус равен 5 см. Вычислите площадь полной поверхности стакана.
  • 609. Четверть круга свернута в коническую поверхность. Докажите, что образующая конуса в четыре раза больше радиуса основания.
  • 610. Найдите косинус угла при вершине осевого сечения конуса, имеющего три попарно перпендикулярные образующие.
  • 611. Площадь основания конуса равна S1, а площадь боковой поверхности равна S0. Найдите площадь осевого сечения конуса.
  • 612. Отношение площадей боковой и полной поверхностей конуса равно 7/8. Найдите угол между образующей и плоскостью основания конуса.
  • 613. Через вершину конуса и хорду основания, стягивающую дугу в 120°, проведено сечение, составляющее с плоскостью основания угол в 45°. Найдите площадь сечения, если радиус основания равен 4 см.
  • 614. Найдите угол между образующей и высотой конуса, если разверткой его боковой поверхности является сектор с дугой 270°.
  • 615. Прямоугольный треугольник с катетами а и b вращается вокруг гипотенузы. Найдите площадь поверхности полученного тела.
  • 616. Равнобедренная трапеция, основания которой равны 6 см и 10 см, а острый угол 60°, вращается вокруг большего основания. Вычислите площадь поверхности полученного тела.
  • 617. Высота конуса равна 4 см, а радиус основания равен 3 см. Вычислите площадь полной поверхности правильной n-угольной пирамиды, вписанной в конус, если: а) n = 3; б) n= 4; в) n = 6.
  • 618. Диагонали осевого сечения усеченного конуса перпендикулярны. Одно из оснований осевого сечения равно 40 см, а его площадь равна 36 дм2. Вычислите площади боковой и полной поверхностей усеченного конуса.
  • 619. Докажите, что: а) центр сферы является центром симметрии сферы; б) любая прямая, проходящая через центр сферы, является осью симметрии сферы; в) любая плоскость, проходящая через центр сферы, является плоскостью симметрии сферы.
  • 620. Вершины прямоугольного треугольника с катетами 1,8 см и 2,4 см лежат на сфере, а) Докажите, что если радиус сферы равен 1,5 см, то центр сферы лежит в плоскости треугольника. б) Найдите расстояние от центра сферы до плоскости треугольника, если радиу
  • 621. Расстояние от центра сферы радиуса R до данной прямой равно d. Докажите, что: а) если d<R, то прямая пересекает сферу в двух точках; б) если d = R, то прямая имеет только одну общую точку со сферой; в) если d>R, то прямая не имеет со сферой ни
  • 622. Найдите координаты точек пересечения сферы, заданной уравнением (х — З)2 +у2 +(z+5)2 = 25, с осями координат.
  • 623. Найдите радиус сечения сферы х2 +у2 + z2 = 36 плоскостью, проходящей через точку М (2; 4; 5) и перпендикулярной к оси абсцисс.
  • 624. Два прямоугольника лежат в различных плоскостях и имеют общую сторону. Докажите, что все вершины данных прямоугольников лежат на одной сфере.
  • 625. Расстояние между центрами двух равных сфер меньше их диаметра. а) Докажите, что пересечением этих сфер является окружность. б) Найдите радиус этой окружности, если радиусы сфер равны R, а расстояние между их центрами равно 1,6 R.
  • 626. Точки А, В, С и D лежат на сфере радиуса R, причем ∠ADB= ∠BDC=∠CDA = 2φ, AD = BD = CD. Найдите: а) АВ и AD; б) площадь сечения сферы плоскостью ABC.
  • 627. Радиус сферы равен 10 см. Вне сферы дана точка М на расстоянии 16 см от ближайшей точки сферы. Найдите длину такой окружности на сфере, все точки которой удалены от точки М на расстояние 24 см.
  • 628. Тело ограничено двумя сферами с общим центром. Докажите, что площадь его сечения плоскостью, проходящей через центры сфер, равна площади сечения плоскостью, касательной к внутренней сфере.

Разные задачи на многогранник, цилиндр, конус и шар

  • 629. Докажите, что если одна из граней вписанной в цилиндр треугольной призмы проходит через ось цилиндра, то две другие грани взаимно перпендикулярны.
  • 630. В конус высотой 12 см вписана пирамида, основанием которой является прямоугольник со сторонами 6 см и 8 см. Найдите отношение площадей полных поверхностей пирамиды и конуса.
  • 631. В усеченный конус вписана правильная усеченная n-угольная пирамида (т.е. основания пирамиды вписаны в основания усеченного конуса). Радиусы оснований усеченного конуса равны 2 см и 5 см, а высота равна 4 см. Вычислите площадь полной поверхности пирам
  • 632. Докажите что если в правильную призму можно вписать сферу, то центром сферы является середина отрезка, соединяющего центры оснований этой призмы.
  • 633. Докажите, что центр сферы, вписанной в правильную пирамиду, лежит на высоте этой пирамиды.
  • 634. Радиус сферы равен R. Найдите площадь полной поверхности описанного около сферы многогранника, если этот многогранник является: а) кубом; б) правильной шестиугольной призмой; в) правильным тетраэдром.
  • 635. Около сферы радиуса R описана правильная четырехугольная пирамида, плоский угол при вершине которой равен α. а) Найдите площадь боковой поверхности пирамиды. б) Вычислите эту площадь при R = 5 см, α = 60°.
  • 636. Докажите, что если в правильную усеченную четырехугольную пирамиду можно вписать сферу, то апофема пирамиды равна полусумме сторон оснований ее боковой грани.
  • 637. Докажите, что центр сферы, описанной около: а) правильной призмы, лежит в середине отрезка, соединяющего центры оснований этой призмы; б) правильной пирамиды, лежит на высоте этой пирамиды или ее продолжении.
  • 638. Докажите, что: а) около любого тетраэдра можно описать сферу; б) в любой тетраэдр можно вписать сферу.
  • 639. Радиус сферы равен R. Найдите площадь полной поверхности: а) вписанного в сферу куба; б) вписанной правильной шестиугольной призмы, высота которой равна R; в) вписанного правильного тетраэдра.
  • 640. В правильной треугольной пирамиде сторона основания равна а, а боковое ребро равно 2а. Найдите радиусы вписанной и описанной сфер.
  • 641. В правильной четырехугольной пирамиде радиусы вписанной и описанной сфер равны 2 см и 5 см. Найдите сторону основания и высоту пирамиды.
  • 642. Сфера вписана в цилиндр (т. е. она касается оснований цилиндра и каждой его образующей, рис. 157, а). Найдите отношение площади сферы к площади полной поверхности цилиндра.
  • 643. В конус с углом φ при вершине осевого сечения и радиусом основания r вписана сфера радиуса R (т. е. сфера касается основания конуса и каждой его образующей, рис. 158, а). Найдите: а) r, если известны R и φ; б) R, если известны r и φ; в) &
  • 644. В конус вписана сфера радиуса r. Найдите площадь полной поверхности конуса, если угол между образующей и основанием конуса равен а.
  • 645. Цилиндр вписан в сферу (т. е. основания цилиндра являются сечениями сферы, рис. 157, б). Найдите отношение площади полной поверхности цилиндра к площади сферы, если высота цилиндра равна диаметру основания.
  • 646. Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 158, б). Найдите: а) r, если известны R и φ; б) R, если известн

Глава VII. Объемы тел. § 1. Объём прямоугольного параллелепипеда

  • 647. Тело R состоит из тел Р и Q, имеющих соответственно объемы V1 и V2. Выразите объем V тела R через V1 и V2, если: а) тела Р и Q не имеют общих внутренних точек; б) тела Р и Q имеют общую часть, объем которой равен
  • 648. Найдите объем прямоугольного параллелепипеда, стороны основания которого равны a и b, а высота равна h, если:
  • 649. Найдите объем куба ABCDA1B1C1D1 если: а) АС= 12 см; б) AC1 =3√2; в) DE= 1 см, где Е — середина ребра АВ.
  • 650. Измерения прямоугольного параллелепипеда равны 8 см, 12 см и 18 см. Найдите ребро куба, объем которого равен объему этого параллелепипеда.
  • 651. Кирпич имеет форму прямоугольного параллелепипеда с измерениями 25 см, 12 см и 6,5 см. Плотность кирпича равна 1,8 г/см3. Найдите его массу.
  • 652. Найдите объем прямоугольного параллелепипеда ABCDA1B1C1D1, если AC1 = 13 см, BD= 12 см и ВС1 = 11 см.
  • 653. Диагональ прямоугольного параллелепипеда равна 18 см и составляет угол в 30° с плоскостью боковой грани и угол в 45° с боковым ребром. Найдите объем параллелепипеда.
  • 654. Диагональ прямоугольного параллелепипеда составляет угол α с плоскостью боковой грани и угол β с плоскостью основания. Найдите объем параллелепипеда, если его высота равна h.
  • 655. Стороны основания прямоугольного параллелепипеда равны a и b. Диагональ параллелепипеда составляет с боковой гранью, содержащей сторону основания, равную b, угол в 30°. Найдите объем параллелепипеда.
  • 656. В прямоугольном параллелепипеде ABCDA1B1C1D1 диагональ B1D составляет с плоскостью основания угол в 45°, а двугранный угол A1B1BD равен 60°. Найдите объем параллелепипеда, если диагональ основания равна 12 см.
  • 657. Найдите объем прямоугольного параллелепипеда ABCDA1B1C1D1, если: а) АС1 = 1 м, ∠С1AС=45°, ∠С1AB = 60°; б) AC1 =24 см, ∠C1AA1= 45°, AC1 составляет угол в 30° с плоскостью боковой грани.
  • 658. Найдите объем прямой призмы АВСA1B1C1 и если ∠BAC = 90°, ВС =37 см, АВ = 35 см, AA1 = 1,1 дм.

Глава VII. Объемы тел. § 2. Объём прямой призмы и цилиндра

  • 659. Найдите объем прямой призмы АВСA1B1C1, если: а) ∠ВАС= 120°, AB = 5 см, AC = 3 см и наибольшая из площадей боковых граней равна 35 см2; б) ∠AB1C = 60°, АВ1 = 3, СВ1=2 и двугранный угол с ребром ВВ1 прямой.
  • 660. Найдите объем прямой призмы АВСA1B1C1, если АВ = ВС = m, ∠ABC = φ и BB1=BD, где BD - высота треугольника ABC.
  • 661. Найдите объем прямой призмы ABCA1B1C1, если АВ = ВС, ∠ABC = α, диагональ А1С равна l и составляет с плоскостью основания угол β.
  • 662. Основанием прямой призмы является параллелограмм. Через сторону основания, равную и, и противолежащую ей сторону другого основания проведено сечение, составляющее угол β с плоскостью основания. Площадь сечения равна Q. Найдите объем призмы.
  • 663. Найдите объем правильной n-угольной призмы, у которой каждое ребро равно а, если: а) n = 3; б) n = 4; в) n = 6; г) n = 8.
  • 664. В правильной треугольной призме через сторону нижнего основания и противолежащую ей вершину верхнего основания проведено сечение, составляющее угол в 60° с плоскостью основания. Найдите объем призмы, если сторона основания равна а.
  • 665. Наибольшая диагональ правильной шестиугольной призмы равна 8 см и составляет с боковым ребром угол в 30°. Найдите объем призмы.
  • 666. Пусть V, г и h соответственно объем, радиус и высота цилиндра. Найдите: а) V, если r = 2√2 см, h = 3 см; б) r, если V =120 см3, h = 3,6 см; в) h, если r = h, V = 8π см3.
  • 667. Алюминиевый провод диаметром 4 мм имеет массу 6,8 кг. Найдите длину провода (плотность алюминия 2,6 г/см3).
  • 668. Какое количество нефти (в тоннах) вмещает цилиндрическая цистерна диаметра 18 м и высотой 7 м, если плотность нефти равна 0,85 г/см3?
  • 669. П лощадь основания цилиндра равна Q, а площадь его осевого сечения равна S. Найдите объем цилиндра.
  • 670. Свинцовая труба (плотность свинца 11,4 г/см3) с толщиной стенок 4 мм имеет внутренний диаметр 13 мм. Какова масса трубы, если ее длина равна 25 м?
  • 671. В цилиндр вписана правильная n-угольная призма. Найдите отношение объемов призмы и цилиндра, если: а) n = 3; б) n = 4; в) n=6; г) n = 8; д) n произвольное целое число.
  • 672. В цилиндр вписана призма, основанием которой является прямоугольный треугольник с катетом а и прилежащим к нему углом α. Найдите объем цилиндра, если высота призмы равна h.

Глава VII. Объемы тел. § 3. Объём наклонной призмы, пирамиды и конуса

  • 673. Сечение тела, изображенного на рисунке 175, плоскостью, перпендикулярной к оси Ох и проходящей через точку с абсциссой х, является квадратом, сторона которого равна 1/x. Найдите объем этого тела.
  • 674. Фигура, заштрихованная на рисунке 176, вращается вокруг оси Ох. Найдите объем полученного тела.
  • 675. Фигура, заштрихованная на рисунке 177, вращается вокруг оси Оу. Найдите объем полученного тела.
  • 676. Найдите объем наклонной призмы, у которой основанием является треугольник со сторонами 10 см, 10 см и 12 см, а боковое ребро, равное 8 см, составляет с плоскостью основания угол в 60°.
  • 677. Найдите объем наклонной призмы АВСA1B1C1, если АВ = ВС = СА = а, АВВ1А1 — ромб, АВ1<ВА1, АВ1=b, двугранный угол с ребром АВ прямой.
  • 678. Основанием призмы АВСА1В1С1 является равносторонний треугольник ABC со стороной m. Вершина А1 проектируется в центр этого основания, а ребро АА1 составляет с плоскостью основания угол φ. Найдите объем призмы.
  • 679. Основанием наклонной призмы ABCA1B1C1 является прямоугольный треугольник ABC с катетами АВ = 7 см и AC = 24 см. Вершина А1 равноудалена от вершин А, В и С. Найдите объем призмы, если ребро АА1 составляет с плоскостью основания угол в 45°.
  • 680. Основанием наклонного параллелепипеда является прямоугольник со сторонами а и b. Боковое ребро длины с составляет со смежными сторонами основания углы, равные φ. Найдите объем параллелепипеда.
  • 681. Все грани параллелепипеда — равные ромбы, диагонали которых равны 6 см и 8 см. Найдите объем параллелепипеда.
  • 682. Докажите, что объем наклонной призмы равен произведению бокового ребра на площадь сечения призмы плоскостью, перпендикулярной к боковым ребрам и пересекающей их.
  • 683. Найдите объем наклонной треугольной призмы, если расстояния между ее боковыми ребрами равны 37 см, 13 см и 30 см, а площадь боковой поверхности равна 480 см2.
  • 684. Найдите объем пирамиды с высотой h, если: a) h = 2 м, а основанием служит квадрат со стороной 3 м; б) h = 2,2 м, а основанием служит треугольник ABC, в котором АВ — 20 см, ВС = 13,5 см, ∠AВС = 30°.
  • 685. Найдите объем правильной треугольной пирамиды, высота которой равна 12 см, а сторона основания равна 13 см.
  • 686. Найдите объем правильной треугольной пирамиды с боковым ребром l, если: а) боковое ребро составляет с плоскостью основания угол φ; б) боковое ребро составляет с прилежащей стороной основания угол α; в) плоский угол при вершине равен β.
  • 687. В правильной треугольной пирамиде плоский угол при вершине равен φ, а сторона основания равна а. Найдите объем пирамиды.
  • 688. Найдите объем правильной четырехугольной пирамиды, если: а) ее высота равна Н, а двугранный угол при основании равен β; б) сторона основания равна m, а плоский угол при вершине равен α.
  • 689. Боковое ребро правильной четырехугольной пирамиды равно m и составляет с плоскостью основания угол φ. Найдите объем пирамиды.
  • 690. Найдите объем и площадь боковой поверхности правильной шестиугольной пирамиды, если ее боковое ребро равно 13 см, а диаметр круга, вписанного в основание, равен 6 см.
  • 691. Основанием пирамиды служит равнобедренный треугольник ABC, в котором АВ = ВС= 13 см, АС= 10 см. Каждое боковое ребро пирамиды образует с ее высотой угол в 30°. Вычислите объем пирамиды.
  • 692. Основанием пирамиды является прямоугольный треугольник с катетами a и b. Каждое ее боковое ребро наклонено к плоскости основания под углом φ. Найдите объем пирамиды.
  • 693. Основание четырехугольной пирамиды — прямоугольник с диагональю b и углом α между диагоналями. Боковые ребра наклонены к плоскости основания под одним и тем же углом. Найдите этот угол, если объем пирамиды равен V.
  • 694. Основанием пирамиды является ромб со стороной 6 см. Каждый из двугранных углов при основании равен 45°. Найдите объем пирамиды, если ее высота равна 1,5 см.
  • 695. Найдите объем треугольной пирамиды SABC, если: а) ∠САВ = 90°, ВС = с, ∠АВС=φ и каждое боковое ребро составляет с плоскостью основания угол Θ; б) АВ= 12 см, ВС = CA = 10 см и двугранные углы при основании равны 45°; в) боковые ребра
  • 696. Основанием пирамиды DABC является треугольник, в котором АВ = 20 см, AC = 29 см, ВС = 21 см. Грани DAB и DAC перпендикулярны к плоскости основания, а грань DBC составляет с ней угол в 60°. Найдите объем пирамиды.
  • 697. Стороны оснований правильной усеченной треугольной пирамиды равны а и 0,5а, апофема боковой грани равна а. Найдите объем усеченной пирамиды.
  • 698. Основания усеченной пирамиды — равнобедренные прямоугольные треугольники, гипотенузы которых равны m и n (m>n). Две боковые грани, содержащие катеты, перпендикулярны к основанию, а третья составляет с ним угол φ. Найдите объем усеченной пирами
  • 699. Основанием пирамиды является прямоугольный треугольник, катеты которого равны 24 дм и 18 дм. Каждое боковое ребро равно 25 дм. Пирамида пересечена плоскостью, параллельной плоскости основания и делящей боковое ребро пополам. Найдите объем полученной
  • 700. В правильной усеченной четырехугольной пирамиде стороны оснований равны 6 см и 4 см, а площадь сечения пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани, равна 15 см2. Найдите объем усеченной пирамиды.
  • 701. Пусть h, г и V — соответственно высота, радиус основания и объем конуса. Найдите: а) V, если h = 3 см, r=1,5 см; б) h, если г = 4 см, V = 48πсм3; в) r, если h = m, V = p.
  • 702. Высота конуса равна 5 см. На расстоянии 2 см от вершины его пересекает плоскость, параллельная основанию. Найдите объем исходного конуса, если объем меньшего конуса, отсекаемого от исходного, равен 24 см3.
  • 703. Найдите объем конуса, если площадь его основания равна Q, а площадь боковой поверхности равна Р.
  • 704. Высота конуса равна диаметру его основания. Найдите объем конуса, если его высота равна Н.
  • 705. Найдите объем конуса, если его образующая равна 13 см, а площадь осевого сечения равна 60 см2.
  • 706. Высота конуса равна 12 см, а его объем равен 324π см3. Найдите угол сектора, который получится, если боковую поверхность конуса развернуть на плоскость.
  • 707. Площадь полной поверхности конуса равна 45π дм2. Развернутая на плоскость боковая поверхность конуса представляет собой сектор с углом в 60°. Найдите объем конуса.
  • 708. Радиусы оснований усеченного конуса равны 3 м и 6 м, а образующая равна 5 м. Найдите объем усеченного конуса.
  • 709. В усеченном конусе известны высота h, образующая l и площадь S боковой поверхности. Найдите площадь осевого сечения и объем усеченного конуса.

Глава VII. Объемы тел. § 4. Объём шара и площадь сферы

  • 710, Пусть V —объем шара радиуса R, a S — площадь его поверхности. Найдите: а) S и V, если R = 4 см; б) R и S, если V = 113,04 см3; в) R и V, если S = 64π см2.
  • 711. Диаметр Луны составляет (приблизительно) четвертую часть диаметра Земли. Сравните объемы Луны и Земли, считая их шарами.
  • 712. Шар и цилиндр имеют равные объемы, а диаметр шара равен диаметру основания цилиндра. Выразите высоту цилиндра через радиус шара.
  • 713. Стаканчик для мороженого конической формы имеет глубину 12 см и диаметр верхней части 5 см. На него сверху положили две ложки мороженого в виде полушарий диаметром 5 см. Переполнит ли мороженое стаканчик, если оно растает?
  • 714. В цилиндрическую мензурку диаметром 2,5 см, наполненную водой до некоторого уровня, опускают 4 равных металлических шарика диаметром 1 см. На сколько изменится уровень воды в мензурке?
  • 715. Сколько кубометров земли потребуется для устройства клумбы, имеющей форму шарового сегмента с радиусом основания 5 м и высотой 60 см?
  • 716. Два равных шара расположены так, что центр одного лежит на поверхности другого. Как относится объем общей части шаров к объему одного шара?
  • 717. Найдите объем шарового сегмента, если радиус окружности его основания равен 60 см, а радиус шара равен 75 см.
  • 718. Диаметр шара разделен на три равные части и через точки деления проведены плоскости, перпендикулярные к диаметру. Найдите объем получившегося шарового слоя, если радиус шара равен R.
  • 719. В шаре проведена плоскость, перпендикулярная к диаметру и делящая его на части 6 см и 12 см. Найдите объемы двух полученных частей шара.
  • 720. Найдите объем шарового сектора, если радиус окружности основания соответствующего шарового сегмента равен 60 см, а радиус шара равен 75 см.
  • 721. Круговой сектор с углом 30° и радиусом R вращается вокруг одного из ограничивающих его радиусов. Найдите объем получившегося шарового сектора.
  • 722. Вода покрывает приблизительно ¾ земной поверхности. Сколько квадратных километров земной поверхности занимает суша? (Радиус Земли считать равным 6375 км.)
  • 723. Сколько кожи пойдет на покрышку футбольного мяча радиуса 10 см? (На швы добавить 8% от площади поверхности мяча.)
  • 724. Докажите, что площадь сферы равна площади полной поверхности конуса, высота которого равна диаметру сферы, а диаметр основания равен образующей конуса.

Вопросы к главе VII

  • 1. Каким соотношением связаны объемы V1 и V2 тел Р1 и Р2, если: а) тело Р1 содержится в теле P2; б) каждое из тел Р1 и Р2 составлено из n кубов с ребром 1 см?
  • 2. Какую часть объема данной прямой треугольной призмы составляет объем треугольной призмы, отсеченной от данной плоскостью, проходящей через средние линии оснований?
  • 3. Изменится ли объем цилиндра, если диаметр его основания увеличить в 2 раза, а высоту уменьшить в 4 раза?
  • 4. Как изменится объем правильной пирамиды, если ее высоту увеличить в n раз, а сторону основания уменьшить в n раз?
  • 5. Основаниями двух пирамид с равными высотами являются четырехугольники с соответственно равными сторонами. Равны ли объемы этих пирамид?
  • 6. Как относятся объемы двух конусов, если их высоты равны, а отношение радиусов оснований равно 2?
  • 7. Из каких тел состоит тело, полученное вращением равнобедренной трапеции вокруг большего основания?
  • 8. Один конус получен вращением неравнобедренного прямоугольного треугольника вокруг одного из катетов, а другой конус — вращением вокруг другого катета. Равны ли объемы этих конусов?
  • 9. Диаметр одного шара равен радиусу другого. Чему равно отношение: а) радиусов этих шаров; б) объемов шаров?
  • 10. Сколько нужно взять шаров радиуса 2 см, чтобы сумма их объемов равнялась объему шара радиуса 6 см?
  • 11. Во сколько раз объем шара, описанного около куба, больше объема шара, вписанного в этот же куб?
  • 12. Как изменится площадь сферы, если ее радиус: а) уменьшить в 2 раза; б) увеличить в 3 раза?
  • 13. Отношение объемов двух шаров равно 8. Как относятся площади их поверхностей?
  • 14. В каком отношении находятся объемы двух шаров, если площади их поверхностей относятся как m2:n2?

Дополнительные задачи к главе VII

  • 725. Площади трех попарно смежных граней прямоугольного параллелепипеда равны S1, S2 и S3. Выразите объем этого параллелепипеда через S1, S2, S3 и вычислите его при S1 =6 дм2, S2=12 дм2, S3=18 дм?.
  • 726. В прямоугольном параллелепипеде диагонали трех граней, выходящие из одной вершины, равны 7 см, 8 см и 9 см. Найдите объем параллелепипеда.
  • 727. Боковое ребро прямоугольного параллелепипеда равно а. Сечение, проведенное через две стороны разных оснований, является квадратом с площадью Q. Найдите объем параллелепипеда.
  • 728. Стороны основания прямого параллелепипеда равны 7 см и 3√2 см, а острый угол основания равен 45°. Меньшая диагональ параллелепипеда составляет угол в 45° с плоскостью основания. Найдите объем параллелепипеда.
  • 729. В прямом параллелепипеде ABCDA1B1C1D1 диагонали BD1. и A1C взаимно перпендикулярны и равны 6 см и 8 см, АВ = 3 см. Найдите объем параллелепипеда.
  • 730. В прямой призме, основанием которой является прямоугольный треугольник, пять ребер равны а, а остальные четыре ребра равны друг другу. Найдите объем призмы.
  • 731. Объем прямой призмы, основанием которой является прямоугольный треугольник, равен 3 м3, а наименьшая и наибольшая из площадей боковых граней равны 3 м2 и 3√5 м2. Найдите длины ребер призмы.
  • 732. Диагональ боковой грани правильной треугольной призмы равна d и составляет угол φ с плоскостью другой боковой грани. Найдите объем призмы.
  • 733. Докажите, что объем треугольной призмы равен половине произведения площади боковой грани на расстояние от этой грани до параллельного ей ребра.
  • 734. На трех данных параллельных прямых, не лежащих в одной плоскости, отложены три равных отрезка АА1, ВВ1 и СС1. Докажите, что объем призмы, боковыми ребрами которой являются эти отрезки, не зависит от положения отрезков на данных прямых.
  • 735. Площади боковых граней наклонной треугольной призмы пропорциональны числам 20, 37, 51. Боковое ребро равно 0,5 дм, а площадь боковой поверхности равна 10,8 дм2. Найдите объем призмы.
  • 736. Найдите объем правильной треугольной пирамиды, если боковая грань составляет с плоскостью основания угол φ, а не лежащая в этой грани вершина основания находится на расстоянии т от нее.
  • 737. Боковое ребро правильной четырехугольной пирамиды составляет с основанием угол φ, а середина этого ребра удалена от основания пирамиды на расстояние, равное m. Найдите объем пирамиды.
  • 738. Высота правильной треугольной пирамиды равна h, а двугранный угол, ребром которого является боковое ребро пирамиды, равен 2φ. Найдите объем пирамиды.
  • 739. В правильной n-угольной пирамиде плоский угол при вершине равен a, а сторона основания равна a. Найдите объем пирамиды.
  • 740. Основанием пирамиды является треугольник, два угла которого равны φ1 и φ2. Высота пирамиды равна h, а каждое боковое ребро составляет с плоскостью основания угол φ3. Найдите объем пирамиды.
  • 741. Основанием четырехугольной пирамиды, высота которой равна Н, является параллелограмм. Диагонали параллелограмма пересекаются под углом α. Попарно равные противоположные боковые ребра пирамиды образуют с плоскостью основания углы β и &gamma
  • 742. Основанием пирамиды является ромб со стороной а. Две боковые грани пирамиды перпендикулярны к плоскости основания и образуют тупой двугранный угол φ. Две другие боковые грани составляют с плоскостью основания двугранные углы Θ. Найдите объе
  • 743. Два ребра тетраэдра равны b, а остальные четыре ребра равны а. Найдите объем тетраэдра, если ребра длины b: а) имеют общие точки; б) не имеют общих точек.
  • 744. В усеченной пирамиде соответственные стороны оснований относятся как 2:5. В каком отношении делится ее объем плоскостью, проходящей через середину высоты этой пирамиды параллельно основаниям?
  • 745. Найдите объем цилиндра, если: а) площадь боковой поверхности равна S, а площадь основания равна Q; б) осевое сечение является квадратом, а высота равна h; в) осевое сечение является квадратом, а площадь полной поверхности равна S.
  • 746. Докажите, что объемы двух цилиндров, у которых площади боковых поверхностей равны, относятся как их радиусы.
  • 747. Конический бак имеет глубину 3 м, а его круглый верх имеет радиус 1,5 м. Сколько литров жидкости он вмещает?

Разные задачи на многогранники, цилиндр, конус и шар

  • 748. В конус вписана пирамида, основанием которой является прямоугольник. Меньшая сторона прямоугольника равна a, a острый угол между его диагоналями равен φ1. Боковая грань, содержащая меньшую сторону основании, составляет с плоскостью основания двуг
  • 749. Основанием пирамиды является ромб со стороной а и острым углом φ. В пирамиду вписан конус, образующая которого составляет с плоскостью основания угол Θ. Найдите объем конуса.
  • 750. В цилиндр вписан шар. Найдите отношение объемов цилиндра и шара.
  • 751. Найдите объем конуса, если радиус его основания равен 6 дм, а радиус вписанной в конус сферы равен 3 дм.
  • 752. В конус, радиус основания которого равен r, а образующая равна l, вписана сфера. Найдите длину линии, по которой сфера касается боковой поверхности конуса.
  • 753. В усеченный конус, радиусы оснований которого равны, r и r1, вписан шар. Найдите отношение объемов усеченного конуса и шара.
  • 754. В правильную треугольную пирамиду с двугранным углом α при основании вписан шар объема V. Найдите объем пирамиды.
  • 755. В пирамиду, основанием которой является ромб со стороной а и углом α, вписан шар. Найдите объем шара, если каждая боковая грань пирамиды составляет с основанием угол β.
  • 756. В сферу радиуса R вписан цилиндр, диагональ осевого сечения которого составляет с основанием угол α. Найдите объем цилиндра.
  • 757. В шар вписан цилиндр, в котором угол между диагоналями осевого сечения равен α. Образующая цилиндра равна l. Найдите объем шара.
  • 758. В шар вписан конус, радиус основания которого равен г, а высота равна И. Найдите площадь поверхности и объем шара.
  • 759. В шар вписана пирамида, основанием которой является прямоугольный треугольник с гипотенузой, равной 2 см. Найдите площадь поверхности и объем шара, если каждое боковое ребро пирамиды составляет с основанием угол α.
  • 760. В шар вписана пирамида, основанием которой является прямоугольник с диагональю 10 см. Каждое боковое ребро пирамиды составляет с основанием угол р. Найдите площадь поверхности и объем шара.
  • 761. Цистерна имеет форму цилиндра, к основаниям которой присоединены равные шаровые сегменты. Радиус цилиндра равен 1,5 м, а высота сегмента равна 0,5 м. Какой длины должна быть образующая цилиндра, чтобы вместимость цистерны равнялась 50 м3?
  • 762. Куб, шар, цилиндр и конус (у двух последних тел диаметры оснований равны высоте) имеют равные площади поверхностей. Какое из этих тел имеет наибольший объем и какое — наименьший?
  • 763. Будет ли плавать в воде полый медный шар, диаметр которого равен 10 см, а толщина стенки: а) 2 мм; б) 1,5 мм? (Плотность меди 8,9 г/см3.)

Задачи повышенной трудности

  • 764. Даны две скрещивающиеся прямые, угол между которыми равен 90°. Найдите множество середин всех отрезков данной длины d, концы которых лежат на этих прямых.
  • 765. Дан тетраэдр, все ребра которого равны. Докажите, что периметры фигур, которые получаются при пересечении этого тетраэдра плоскостями, параллельными двум противоположным ребрам, равны.
  • 766. Докажите, что сумма квадратов двух противоположных ребер тетраэдра вдвое больше суммы квадратов отрезков, соединяющих соответственно середины остальных противоположных ребер.
  • 767. Известно, что из любого равностороннего треугольника можно склеить тетраэдр, перегибая его по трем средним линиям и склеивая соответствующие части его сторон (см. рис. 88). Какому условию должны удовлетворять углы произвольного треугольника, чтобы из
  • 768. Найдите множество оснований всех перпендикуляров, проведенных из данной точки А, не лежащей на прямой ВС, к плоскостям, проходящим через эту прямую.
  • 769. Докажите, что если одна из высот тетраэдра проходит через точку пересечения высот противоположной грани, то и остальные высоты этого тетраэдра проходят через точки пересечения высот противоположных граней.
  • 770. Все плоские углы тетраэдра ОАВС при вершине О равны 90°. Докажите, что площадь треугольника АОВ равна среднему геометрическому площадей треугольников ABC и O1АВ, где O1 — проекция точки О на плоскость ABC.
  • 771. Все плоские углы тетраэдра ОАВС при вершине О прямые. Докажите, что квадрат площади треугольника ABC равен сумме квадратов площадей остальных граней (пространственная теорема Пифагора).
  • 772. Сколько существует плоскостей, каждая из которых равноудалена от четырех данных точек, не лежащих в одной плоскости?
  • 773. Докажите, что прямая, пересекающая две грани двугранного угла, образует с ними равные углы тогда и только тогда, когда точки пересечения равноудалены от ребра.
  • 774. Докажите, что сечением куба может быть правильный треугольник, квадрат, правильный шестиугольник, но не может быть правильный пятиугольник и правильный многоугольник с числом сторон более шести.
  • 775. Докажите, что сумма квадратов расстояний от вершин куба до прямой, проходящей через его центр, не зависит от положения этой прямой.
  • 776. Разбейте куб на шесть равных тетраэдров.
  • 777. Комната имеет форму куба. Паук, сидящий в середине ребра, хочет, двигаясь по кратчайшему пути, поймать муху, сидящую в одной из самых удаленных от паука вершин куба. Как должен двигаться паук?
  • 778. Докажите, что в кубе можно вырезать сквозное отверстие, через которое можно протащить куб таких же и даже больших размеров.
  • 779. Площадь боковой грани правильной шестиугольной пирамиды равна S. Найдите площадь сечения пирамиды плоскостью, проходящей через середину высоты пирамиды и параллельной плоскости боковой грани.
  • 780. Какую наибольшую длину может иметь ребро правильного тетраэдра, который помещается в коробку, имеющую форму куба со стороной 1 см?
  • 781. Дан куб ABCDA1B1C1D1. Докажите, что пересечение тетраэдров AB1CD1 и C1BA1D есть правильный октаэдр.
  • 782. Докажите, что из конечного числа попарно различных кубов нельзя составить прямоугольный параллелепипед.
  • 783. Внутри куба с ребром 1 см расположена ломаная, причем любая плоскость, параллельная любой грани куба, пересекает ее не более чем в одной точке. Докажите, что длина ломаной меньше 3 см. Докажите также, что можно построить ломаную, обладающую указанным
  • 784. Докажите, что для любого выпуклого многогранника сумма числа граней и вершин больше числа ребер на 2 (теорема Эйлера).
  • 785. Докажите, что центры граней правильного додекаэдра являются вершинами правильного икосаэдра.
  • 786. Докажите, что центры граней правильного икосаэдра являются вершинами правильного додекаэдра.
  • 787. В правильном треугольнике ABC сторона равна а. Отрезок AS длины а перпендикулярен к плоскости ABC. Найдите расстояние и угол между прямыми АВ и SC.
  • 788. В правильном треугольнике ABC сторона равна а. На сонаправленных лучах BD и СЕ, перпендикулярных к плоскости ABC, взяты точки D и Е так, что BD=a/√2, СЕ = а√2. Докажите, что треугольник ADE прямоугольный, и найдите угол между плоскостями
  • 789. Используя векторы, докажите, что сумма квадратов четырех диагоналей параллелепипеда равна сумме квадратов двенадцати его ребер.
  • 790. Основание ABC тетраэдра ОАВС прозрачное, а все остальные грани зеркальные. Все плоские углы при вершине О прямые. Докажите, что луч света, вошедший в тетраэдр через основание ABC под произвольным углом к нему, отразившись от граней, выйдет в противоп
  • 791. Из точки А исходят четыре луча АВ, AC, AD и АЕ так, что ∠ВАС=60°, ∠BAD= ∠DAC = 45°, а луч АЕ перпендикулярен к плоскости ABD. Найдите угол САЕ.
  • 792. Докажите, что высоты тетраэдра пересекаются в одной точке тогда и только тогда, когда противоположные ребра тетраэдра перпендикулярны.
  • 793. Три боковые ребра тетраэдра равны друг другу. Докажите, что прямая, образующая равные углы с этими ребрами, перпендикулярна к плоскости основания.
  • 794. Все плоские углы тетраэдра ОABC при вершине О прямые. Докажите, что проекция вершины О на плоскость ABC есть точка пересечения высот треугольника ABC.
  • 795. Из точки сферы проведены три попарно перпендикулярные хорды. Докажите, что сумма их квадратов не зависит от положения этих хорд.
  • 796. Найдите множество центров всех сечений шара плоскостями, проходящими через данную прямую, не пересекающую шар.
  • 797. Найдите множество всех точек, из которых можно провести к данной сфере три попарно перпендикулярные касательные прямые.
  • 798. В тетраэдр с высотами h1, h2, h3, h4 вписан шар радиуса R. Докажите, что
  • 799. Какому условию должны удовлетворять радиусы трех шаров, попарно касающихся друг друга, чтобы к ним можно было провести общую касательную плоскость?
  • 800. На плоскости лежат четыре шара радиуса R, причем три из них попарно касаются друг друга, а четвертый касается двух из них. На эти шары положены сверху два шара меньшего радиуса г, касающиеся друг друга, причем каждый из них касается трех больших шаро
  • 801. На плоскости лежат три шара радиуса R, попарно касающиеся друг друга. Основание конуса лежит в указанной плоскости, а данные шары касаются его извне. Высота конуса равна λR. Найдите радиус его основания.
  • 802. Плоскости АВ1С1 и А1ВС разбивают правильную треугольную призму ABCA1B1C1 на четыре части. Найдите отношение объемов этих частей.
  • 803. Докажите, что объем тетраэдра равен 1/6abcsinφ, где а и b — противоположные ребра, а φ и с — соответственно угол и расстояние между ними.
  • 804. Докажите, что плоскость, проходящая через ребро и середину противоположного ребра тетраэдра, разделяет его на две части, объемы которых равны.
  • 805. Основанием пирамиды OABCD является параллелограмм ABCD. В каком отношении делит объем пирамиды плоскость, проходящая через прямую АВ и среднюю линию грани OCD?
  • 806. Даны три параллельные прямые, не лежащие в одной плоскости. На одной из них взят отрезок АВ, а на двух других — точки С и D соответственно. Докажите, что объем тетраэдра ABCD не зависит от выбора точек С и D.
  • 807. Точки Е и F — середины ребер DC и ВВ1 куба ABCDA1B1C1D1 с ребром 1 см. Найдите объем тетраэдра AD1EF.
  • 808. В двух параллельных плоскостях взяты два многоугольника. Их вершины соединены отрезками так, что у полученного многогранника все боковые грани — трапеции, треугольники и параллелограммы. Докажите, что
  • 809. Два равных цилиндра, высоты которых больше их диаметров, расположены так, что их оси пересекаются под прямым углом и точка пересечения осей равноудалена от оснований цилиндров. Найдите объем общей части этих цилиндров, если радиус каждого из них раве
  • 810. Вокруг данного шара описан конус с углом а при вершине осевого сечения При каком значении а конус имеет наименьший объем?
  • 811. В конус вписан шар. Докажите, что отношение объемов конуса и шара равно отношению площадей полной поверхности конуса и сферы, являющейся границей шара.
  • 812. Правильная четырехугольная пирамида, у которой сторона основания равна а, а плоский угол при вершине равен а, вращается вокруг прямой, проходящей через вершину параллельно стороне основания. Найдите объем полученного тела вращения.
  • 813. Шар образован вращением полукруга вокруг прямой, содержащей диаметр. При этом поверхность, образованная вращением некоторой хорды, один конец которой совпадает с концом данного диаметра, разбивает шар на две равные по объему части. Найдите косинус уг
  • 814. Все высоты тетраэдра пересекаются в точке Н. Докажите, что точка Н, центр О описанной сферы и точка G пересечения отрезков, соединяющих вершины с точками пересечения медиан противоположных граней тетраэдра, лежат на одной прямой (прямая Эйлера), прич
  • 815. Дан тетраэдр, все высоты которого пересекаются в одной точке. Докажите, что точки пересечения медиан всех граней, основания высот тетраэдра и точки, которые делят каждый из отрезков, соединяющих точку пересечения высот с вершинами, в отношении 2:1, с


Закрыть ... [X]

Собакевич усадьба цитаты Как сделать дом моей мечты

Актриса татьяна васильева после пластики Актриса татьяна васильева после пластики Актриса татьяна васильева после пластики Актриса татьяна васильева после пластики Актриса татьяна васильева после пластики Актриса татьяна васильева после пластики